4 [] APPLICATIONS OF DIFFERENTIATION

4.1 Maximum and Minimum Values

1. A function f has an absolute minimum at z = ¢ if f(c) is the smallest function value on the entire domain of f.

whereas f has a local minimum at ¢ if f(c) is the smallest function value when z is near c.

2. (a) The Extreme Value Theorem

(b) See the Closed Interval Method.

3. Absolute maximum at b: absolute minimum at d; local maxima at b and e; local minima at d and s;

neither a maximum nor a minimum at a, c, r, and ¢.

4. Absolute maximum at e; absolute minimum att; local maxima at c. e. and s: local minima at b.c.d, and r;

neither a maximum nor a minimum at a.

3. Absolute maximum value is f(4) = 4: absolute minimum value js f(7) = 0; local maximum values are f(4) =4

and f(6) = 3; local minimum values are f(2) =1and f(5) = 2.

6. Absolute maximum value is f(8) = 5: absolute minimum value s f(2) = 0: local maximum values are f(1)y=2,
f(4) =4, and f(6) = 3: local minimum values are f(2) =0. f(5) = 2.and f(7) = 1.

7. Absolute minimum at 2, absolute maximum at 3. 8. Absolute minimum at 1. absolute maximum at 5,

local minimum at 4 local maximum at 2, local minimum at4

y
3
2

9. Absolute maximum at 5, absolute minimum at 2, 10. f has no local maximum or minimum, but 2 and
local maximum at 3, local minima at 2 and 4 4 are critical numbers
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11. (a) (b) y (©)
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12. (a) Note that a local maximum
cannot occur at an endpoint.
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| Note: By the Extreme Value Theorem. f must not be
continuous.
(b) y

13. (a) Note: By the Extreme Value Theorem, f must not
be continuous; because if it were, it would attain

an absolute minimum.
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15. f(xz) =8 — 3z.z > 1. Absolute maximum
f(1) = 5; no local maximum. No absolute or
local minimum.

w

(1,5)

17. f(z) = 2%, 0 < = < 2. No absolute or local
maximum or minimum value.

y
(2.4

19. f(z) = 2%.0 < z < 2. Absolute minimum

£(0) = 0: no local minimum. No absolute or
local maximum.

2.4

21. f(z) = 2* —3 < & < 2. Absolute maximum
f(=3) = 9. No local maximum. Absolute and
local minimum £(0) = 0.

(-3.9) Y

2.4
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16. f(z) = 3 — 2z. < 5. Absolute minimum

f(5) = =7 no local minimum. No absolute or
local maximum.

(5,-7)

18. f(z) = 2°. 0 < z < 2. Absolute maximum
£(2) = 4: no local maximum. No absolute or
local minimum.

(2,4)

20. f(z) = 2%, 0 < z < 2. Absolute maximum

f(2) = 4. Absolute minimum £(0) = 0. No
local maximum or minimum.

v
(2.4)

22. f(z) =1+ (z+1)%, -2 < 2 < 5. No absolute
or local maximum. Absolute and local minimum

f(=1) =1.
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23. f(t) =1/t,0 < t < 1. No maximum or

minimum.

0 1 t

25. f(0) = sinf, —2m < 6 < 27. Absolute and
f(3) = 1. Absolute

I

local maxima f(—2F)

2
and local minima f(—%) - f(§21) _
y

PR 2
m

-2 \/’0 N

21. f(z) = 1 — y/z. Absolute maximum f(0) = 1;
no local maximum. No absolute or local
minimum.

N
0 \x

11—z ifo<z<2
2. f(z) = "
2t —4 it2<z<3
Absolute maximum f(3) = 2: no local
maximum. No absolute or local minimum.

y

2

24. f(t) = 1/t.0 < t < 1. Absolute minimum
f(1) = 1; no local minimum. No local or

absolute maximum.

26. f(f) = tan@, —5 < 6 < 7. Absolute minimum

f( ) = —1: no local minimum. No absolute

4
or local maximum.

ol )

EAH I

28. f(x) = e”. No absolute or local maximum or

minimum value.

y

0 z? if —1<z<0

30. f(z) =

f@) 2z if0<z<1
Absolute and local maximum f(0) = 2.

No absolute or local minimum.

y ]
2




31.

32,

33.

34.

35.

36.

37.

38.

39.

40.

M.

42,
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fl@)=52"+4z = fl(2)=100+4. f(z)=0 = z= —2.50 —2 is the only critical number.

f@)=2*+2" -z = f'(z)=32>+2z—1. fl)=0 = (z+1)Bz-1)=0 = z=-14.
These are the only critical numbers.

fl@)=a+32" ~24c = f'(z)=32%+ 62— 24 = 3(a® + 2z 8).

f(#)=0 = 3(x+4)(z—2)=0 = z=—4.2 These are the only critical numbers.

f@)=2+2*+z = flz)=322+22+1 f’(a:)':O = 3°+2z4+1=0 =

Lo 2 VI-T2
=

- Neither of these is a real number. Thus, there are no critical numbers.

s(t) =3t +4t° -6t = §(t) =120 +122 — 120 /(1) =0 = 12t(t*+¢t~1) = t=0or

t?4+t—1=0. Using the quadratic formula to solve the latter equation gives us

_ 2 _ ) _ _
t= 1+ 1 4(1)( ): 1:,:\/gz0‘618.—1.618. The three critical numbers are 0, M
2(1) 2 2
z+1 224241 1—(2+1)(22+1) —2%2 -9z
fe) =2 o = )2 . = — ;=0 &
224+ 241 (224+2z+1) (22+2z+1)

z(z+2)=0 = 2z =0, —2are the critical numbers. (Note that 2° + 2z + 1 # 0 since the discriminant < 0.)

() = 2z + 3] 2c+3  if22+3>0 @) 2 ifz>-3
~(2z+3) if 224+3<0 -2 ifr< -3

g'(x) is never 0, but ¢’ (x) does not exist for z = —2.50 —3 is the only critical number.
_ /3 _ _-2/3 — 1.-2/3 2 -5/3 _ 1, __5/3 _z+2
g(z) =2'° — 2 = J@) =324 2o = 1y /(x+2)_3:c_5/3'

9'(—2) = 0and g’(0) does not exist, but 0 is not in the domain of g, so the only critical number is —2.
gt) = 5t*3 453 = g'(t) =218 4 24*/3. ¢'(0) does not exist. so ¢ = 0 is a critical number.
IO =2"3248) =0 & t=-2s0t=—2isalso a critical number.
1 , . . .
gty =Vt (1 —t) =72 _3/2 g'(t) = i 2Vt g'(0) does not exist. s0 ¢ = 0 is a critical number.

1-—3¢
0=4g'(t)= W = t=3.s0t=1isalsoa critical number.

F(z) =2z - 4)> =

F’(ac):x4/5~2(m*4)+(z—4)2-%x*1/5:é$_1/5(x~4)[5-9:-2+(1‘—4)-4]

z—4)(14z — 16 2(x —4)(7z - 8
= 5)3(11/5 ): ( 51:)1(/5 ):Owhenz:4.§;andF'(O) does not exist.

Critical numbers are 0, %. 4.

Ga)=Va? -z = G'(z)= 1(a?—2) " 2z - 1).  G’(x) does not exist when 22 — & = 0, that is.

whenz=00r1.G'(z) =0 & 22-1=0 o g— 3. So the critical numbers are z = 0. 1L
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43.

45

4].

48.

49.

50.

51.

52,

53.

54.
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f(0) =2cosf +sin’0 = f'(0) = —2sinf + 2sin6 cosf. f'(0)=0 = 2sinf(cosfd—-1)=0 =
«inf = Oorcosd =1 = @ = nw (nan integer) or = 2nm. The solutions § = nw include the solutions

# = 2n. so the critical numbers are 6 = nm.

. g(0) =40 —tan® = ¢'(0) =4 —sec®d. ¢'(6)=0 = sec’0 =4 = secf=%2 =

cosf = i% = 0=73+2nm %’T + 2nm, 2?" + 2nm, and %" + 2nm are critical numbers.
Note: The values of 0 that make g’ () undefined are not in the domain of g.
f(z) =zlnz = f'(z)=2z(1/z)+(nz) - 1=hz+1 fx)y=0 & lhz=-1 &

¢ = e~ ! = 1/e. Therefore, the only critical number is z = 1/e.

. flz) =ze** = f'(z)= z(2e%®) + *® = e**(2z + 1). Since €% is never 0, we have f'(z) = 0 only when

2c+1=0 & == —%. So ——% is the only critical number.

f(z)=3z*-122+5.[0,3]. fl(zx)=62—-12=0 & z= 2. Applying the Closed Interval Method, we
find that f(0) = 5. f(2) = —7.and f(3) = —4. So f(0) = 5 is the absolute maximum value and f(2) = —7 is the
absolute minimum value.

flz)=2*-3z+1. [0,3. f'(z)= 322 -3=0 < z=+1but—1lisnotin[0,3]. f(0)=1. f(1)=—L

and f(3) = 19. So f(3) = 19 is the absolute maximum value and f(1) = —1 is the absolute minimum value.

flz) = 22° - 32% — 12z + 1, [-2,3]. f'(z) =62 — 6z —12= 6(z® —z—2) =6(z —2)(z + 1)=0 &
=2 -1 f(-2)=-3 f(-1)=8 f(2)=-19,and f(3) = —8. So f(—1) = 8 is the absolute maximum

value and f(2) = —19 is the absolute minimum value.

f(z) =a® — 622 +9z+2. [-1,4]. f'(z)= 322 - 122+ 9=3(z> -4z +3) =3 -1)(z—-3)=0 &
r=13 f(-1)=-14, f(1) =6, f(3) =2,and f(4) = 6. So f(1) = f(4) = 6 is the absolute maximum

value and f(—1) = —14 is the absolute minimum value.

flo) =2t — 20 +3. [-2,3]. f(x) =42’ —dw= 4z(z? —1) =4z +1)(z-1)=0 & z=-10.1
f(=2)=11. f(-1) =2, f(0)=3.f(1) =2, f(3) = 66. So f(3) = 66 is the absolute maximum value and

f(&1) = 2 is the absolute minimum value.

flz) = (2% - 1)% [-1,2]. f'(z) = 3(2* - 1).2(233) =6z +1)>(x-1)°=0 & z=-10,1
f(£1) = 0. f(0) = —1,and f(2) = 27. So £(2) = 27 is the absolute maximum value and f(0) = —1is the

absolute minimum value.

2 -~ 2
f(x) = (z * 1) IZ(Qm) = 1-z ;=0 & x= +1, but —1 is not in [0, 2].
@+ 1) @+ 1)

F0)=0.f(1)=3.f(2) = 3. S0 f(1) = 1 is the absolute maximum value and £(0) = 0 is the absolute

T
——.[0,2. fl(x)=
2 02 f@
minimum value.

% — z? z) — (x® — x 16z
flz) == i. [—4,4]. f’(m):( +4)(2(:1;Z+51)2 ) Bt =0 & z=0

f(£4) =12 = 2 and f(0) = —1. So f(£4) = 2 is the absolute maximum value and f(0) = —1 is the absolute

minimum value.
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57.

59.

60.

61.

62.

Cf(t) = VB —t). [0.8]. f(t) =83~/ o fp) = SETAR 43 = 4239 gy =

SECTION 41 MAXIMUM AND MINIMUM VALUES O 269

ft) = tvA— . [-1,2).

- —t? P+ (41" 422
W)=t - 14— (—2)+ (4- )2 1= VI— 2= - ,
R e T Vi-e  Vie

ff)=0 = 4-2=0 = *=2 = t=4v2 buit= —+/2 is not in the given interval, [-1,2].
f'(t) does notexistif4 —t2 =0 = ¢ = 42 but —2 is not in the given interval. f(~1) = —/3, f(\/ﬁ) =2,

and f(2) = 0. So f(\/ﬁ) = 2 is the absolute maximum value and f(—1) = —/3 is the absolute minimum value.

f'(t)=0 = t=2_f'(t)does not exist if t = 0. f(0)=0.f(2) =6 ¥/2 ~ 7.56. and f(8) = 0.

So f(2) = 6 V/2 is the absolute maximum value and f(0) = f(8) = 0is the absolute minimum value.

f(x) = sinz + cosz. [U,%]. f'(x) =cosz —sinz =0 < sinz=cosz = cosmzl =

tanz=1 = z=7 f0)=1f(F)=v2~ 141 f(F) = Bt~ 1.37. So f(Z) = V2 is the

4

absolute maximum value and f(0) = 1 is the absolute minimum value.

- f(@) =z —2cosz, [~m,7]. f(z)=1+2sinz=0 <« sinz = -1 & r=-% _z

flom) =2-m~ 114 f(-%) = VB %2 ~ —0.886. f(~Z) = —Z — /3 ~ —2.26,

f(m) =7 +2~5.14. So f(r) = 7 + 2 is the absolute maximum value and f(-%) = —% — V3 is the absolute
minimum value.

fl@)=2e7",[0,2]. f'(z) =a(—e %) +e® = e (l-2)=0 & z=1.

f0)=0.f(1) =e ' =1/e~0.37, f(2) = 2/e* ~ 0.27. So f(1) = 1/e is the absolute maximum value and
f(0) = 0is the absolute minimum value.

) = ln_ac 1.3 fz) = x(l/zgzz— Inz _ l—xlnzv
f(1)=0/1=0. f(e) = 1/e ~ 0.368, f(3) = (In3)/3 ~ 0.366. So f(e) = 1/e s the absolute maximum value

and f(1) = 0 is the absolute minimum value.

=0 & 1-lnz=0 & hz=1 < T=e.

xr—3

/ , 3 , - .
f(z) =z —-3Inaz, [1.4]. f(x):l—;: =0 & z=3. f' does not exist for z = 0, but 0 is not

in the domain of f.  f(1) = 1. f(3) =3 — 3In3 ~ —0.296. f(4) =4-31In4 ~ —0.159. So f(1) =1isthe

absolute maximum value and f(3) =3—3In3 ~ —0.296 is the absolute minimum value.

fl@)=e™ e [0,1]. f(z)=e*(-1) —e2(-g)= 2 L _2-¢€

621 ex 621

T=2x069. f(0)=0.f(ln2) =2 —e 22 ()71 (n2)=2 51 pon

f(1)=e"' —e7? ~0.233. So f(In 2) = § is the absolute maximum value and f(0) = 0is the absolute

minimum value.
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63. f(z) =z?(1—-2)*. 0<z<1.a>0b>0.
fl@) =2 b1 -2 (-1 +(1-2) az* "t =2* (1 —2)" o b(-1) + (1~ ) -a
=2° (1 -2)"'(a—az — bx)

At the endpoints, we have f(0) = f(1) =0 [the minimum value of f ]. In the interval (0, 1), fl(z)=0 <

b
f( n ):< : >a<l‘ ; >b= a® (atb—a)'__a® B a%
atb) \a+b atb) " @b\ atd ) (a+b)* (@+b"  (a+b)™"

+
b
So f( j_ b) = ( 4 is the absolute maximum value.

a4 b)a+b
64. 0 We see that f/(z) = 0 at about z = 0.0 and 2.0, and that f'(z) does
( / ; ] not exist at about £ = —0.7. 1.0. and 2.7, so the critical numbers of f
i are about —0.7, 0.0, 1.0, 2.0, and 2.7.
) 4
LN

65. (a) 10 From the graph, it appears that the absolute maximum value is about
V\ J f(—1.63) = 9.71, and the absolute minimum value is about
, £(1.63) = —7.71. These values make sense because the graph is

-3 —H3
( \/ » symmetric about the point (0, 1). (y = x> — 8z is symmetric about

the origin.)

) fz)=2° —8z+1 = fl(z)=32%-8S0f(2)=0 = e=+/%

) - (o) )1 o
:—1§\/§+1=1—3—2§>@ [minimum] or %Q\/§+1:1+§Z§@ [maximum]

(From the graph. we see that the extreme values do not occur at the endpoints.)

66. (a) From the graph, it appears that the absolute maximum value is about
£(—0.58) = 1.47. and the absolute minimum value is about
f(=1) = £(0) = 1.00; that is. at both endpoints.
b fl@)=e” "% = f(z)=e" (32> —1).S0 f'(z) =0on[-1,0] = ==~ 1/3.

f(=1) = £(0) = 1 (minima) and f(-\/l/S) — e V3/9H VB3 _ o2 V3/9 (maximum).
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67. (a) 04 From the graph. it appears that the absolute maximum value is about

£(0.75) = 0.32. and the absolute minimum value is

f(0) = f(1) = 0: that is. at both endpoints.

0
1— z —2z%) + 27;—21‘2) 3z — 4z>
® f@)=zve~2® = f(2)= Nm_—mz*”‘ﬁ : 2\)/_—95_(12 :2\$/——m—2;2'

Sofi(@)=0 = 3r-42"=0 = 2B3-42)=0 = z=0o0rd f(0)=f(1)=0 [minimum],
and f(3) = 21/2 — (2)® = 28 [maximum|.

68. (a) _ From the graph, it appears that the absolute maximum value is about

0.8
N ﬂ f(5.76) = 0.58, and the absolute minimum value is about
0L J f(3.67) = —0.58.
0.8

cosx 2+sinz)(=sinz) — (cosz)(cosz) —1-—2sinz
®) f) = 72L& f(y) = Ersina)(csing) - ( - o
2 +sinz (2 +sinx) (2 +sinz)
Sof'(z)=0 = sinz=-1 = =T or 4T Now f(Ir) ="T‘//§‘2Q=—\/L5 [minimum],

and f(l—(l;'-) T/zL = \/— [maximum].

mass 1000

69. The density is defined as p = volume = m (in g/cm®). But a critical point of p will also be a critical point

of V' [since 3—; = —IOOOV_z% and V' is never 0]. and V is easier to differentiate than p.

V(T) = 999.87 — 0.06426T + 0.00850437°2 — 0.0000679T % =

V/(T) = —0.06426 + 0.0170086T — 0.00020377 2. Setting this equal to 0 and using the quadratic formula to

- —0.0170086 + +/0.0170086% — 4 - 0.0002037 - 0.06426
find T, tT = ~ 3.9665° .5318°C. Si
n we ge 5(~0.0002037) 3.9665°C or 79.5318°C. Since

we are only interested in the region 0°C < T < 30°C. we check the density p at the endpoints and at 3.9665°C:

1000 1000 1000
0) ~ ~ 1.00013: p(30) ~# ———— =~ 0. - o(3. ~ ~1. .
©)~ 59957 P(30) & roa—rse A 0.99625: p(3.9665) 550 7245 = 1-000255. So water has

its maximum density at about 3.9665°C.
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10.

n.

12

e uWw N ar _ (sin 0 + cos 0)(0) — uW (ucosf —sinf)  —pW(ucosf —sin 0)
psin @ + cos 6 do (usin @ + cos0)? (usin @ + cos 0)*
dF . in 6
So i 0 = pcosf—sind=0 = p= s;r;g = tan 6. Substituting tan 6 for p in F' gives us
P (tan )W _ Wtanf  Wtanfcosf _ W siné  Wsind
(tan @) sinf 4+ cosf  sin> 0 " sin?6 +cos2f 1 Sy
—— +cosf
cos @
. . p p
If tan 6 = p. then sin § = —==—= (see the figure). so F' = —W. We
Va2 +1 & Vi +1

compare this with the value of F' at the endpoints: F(0) = pW and F(%) =W.

I

Now because ———
V241l

is less than or equal to each of F'(0) and F(%) Hence,

<land —— —E—w

< u, we have that
Ve +1 viur+1

n

virr+1

W is the absolute minimum value of F'(6). and it

occurs when tan 8 = p.

We apply the Closed Interval Method to the continuous function

I(t) = 0.00009045t> + 0.001438t* — 0.06561¢° + 0.4598t2 — 0.6270t + 99.33 on [0, 10]. Its derivative is
I'(t) = 0.00045225t* + 0.005752t> — 0.19683¢% + 0.9196t — 0.6270. Since I’ exists for all ¢, the only critical
numbers of I occur when I’ (t) = 0. We use a root-finder on a computer algebra system (or a graphing device) to
find that I’ (t) = 0 when t ~ —29.7186, 0.8231. 5.1309. or 11.0459. but only the second and third roots lie in the
interval [0, 10]. The values of I at these critical numbers are 1(0.8231) ~ 99.09 and 1(5.1309) ~ 100.67. The
values of I at the endpoints of the interval are I(0) = 99.33 and I1(10) ~ 96.86. Comparing these four numbers,
we see that food was most expensive at t ~ 5.1309 (corresponding roughly to August, 1989) and cheapest at

t = 10 (midyear 1994).

(a) 4200 The equation of the graph in the figure is

o(t) = 0.00146t> — 0.11553> + 24.98169t — 21.26872.

125

0

(b) a(t) = /() = 0.00438¢* — 0.23106t + 24.98169 = a’(t) = 0.00876¢ — 0.23106. a’(t) =0 =

t = 8:3(3);(7)2 ~ 26.4. a(0) ~ 24.98. a(t1) ~ 21.93, and a(125) ~ 64.54. The maximum acceleration is about

64.5 ft/s> and the minimum acceleration is about 21.93 ft/s”.
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B. @ v(r) = k(ro —r)r® = kror? —kr® = /(1) = 2kror — 3kr?. V(r)=0 = kr(2r0—3r)=0
2
3

2 4 3 _ . 4 1 . . . _ 2 .
v(2r¢) = &krd. and v(ro) = 0. Since 37 > §- U attains its maximum value at r = £ro. This supports the

statement in the text.

= 7 =00r Zro (but 0 is not in the interval). Evaluating v at $ro. 279, and 7o, we get v(ir) = 2krg.

(b) From part (a), the maximum value of v is 2%]{:7“8.
(c) v
4
Shrit
o+ }
0 370 ro”

Mg(z)=2+(z-5)° = g¢(x)=3x-5> = ¢(5)=0.505isacritical number. But g(5) =2and g
takes on values > 2 and values < 2 in any open interval containing 5. so g does not have a local maximum or

minimum at 5.

Boflz) =2 +2" +24+1 = f(z) =1012"° + 512°° + 1 > 1 for all z. so f'(z) = 0 has no solution.

Thus. f(z) has no critical number, so f(x) can have no local maximum or minimum.

76. Suppose that f has a minimum value at c. so f(z) > f(c) for all z near c. Then g(z) = —f(z) < —f(c) = g(e)

for all z near c, so g(z) has a maximum value at c.
71. If f has a local minimum at c. then g(z) = —f(x) has a local maximum at c. so ¢’(c) = 0 by the case of Fermat’s
Theorem proved in the text. Thus. f'(c) = —g'(c) = 0.

8. (2) f(z) = az® +bz® + cx + d. a # 0. So f'(z) = 3az® + 2bz + cis a quadratic and hence has either 2, 1, or 0
real roots, so f(x) has either 2, 1 or 0 critical numbers.

Case (i) (2 critical numbers): Case (ii) (1 critical number): Case (iii) (no critical number):
fl@)=23-3z = flz) =2 = flz)=2>4+3z =
fl(@) =32 —3.s0zx=—1.1 f'(z) =32% s0z =0 f'(z) = 32 + 3.
are critical numbers. is the only critical number. so there are no real roots.
y

(b) Since there are at most two critical numbers, it can have at most two local extreme values and by (i) this can

occur. By (iii) it can have no local extreme value. However. if there is only one critical number, then there is no
local extreme value.
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APPLIED PROJECT The Calculus of Rainbows

1. From Snell’s Law, we have sina = ksin3 =~ 3sinf & (= arcsin (2 sin o). We substitute this into

D@)=n+20—-4f=7+2a—4 arcsm(3 sin ). and then differentiate to find the minimum:

2] 712 3cos
D'(a)=2-4[1-(} sina)’] " (§eosa) =2 __3C05Q _ phisis 0 when ——oeB% 9
,/1—ﬁsma 1—%sma
& feosfa=1-Zsina & Scos?a=1-%(1-cos’a) & Zeosa=15 ©
cosa= /2 < a=arccos,/ = = 59.4°. and so the local minimum is D(59.4°) ~ 2.4 radians ~ 138°.

To see that this is an absolute minimum, we check the endpoints. which in this case are @ = 0 and a = 3
D(0) =  radians = 180°. and D (%) ~ 166°.

. g . . dg dB  3cosa
Another method: We first calculate ——: =3 =% —= = ==
0 metho e calculate —= sina = 3sinf ¢ cosa = 3co s 8 T da ~dcosp SO
. y d,B as 1
since D' () = 2 — 4 — =0 & o= the minimum occurs when 3 cos & = 2 cos 8. Now we square both

sides and substitute sin @ = § sin 3, leading to the same result.

2. If we repeat Problem | with & in place of %. we get D(a) = 7 + 2 — 4arcsin<% sin a) =

] . 2
D'(a) =2 - dcosa . which is 0 when 2C(;sa =4/1- <sn’1€a) &
k1/1— [(sina)/k)?

9 2 . 2 ’
< czsa) :1—(5120{) o dcosla=k?—sina & 3cosfa=k -1 &

[k* -1 ) . . .
o = arccos 3 So for k &~ 1.3318 (red light) the minimum occurs at a1 ~ 1.038 radians, and so the

rainbow angle is about m — D(a1) = 49.3°. For k ~ 1.3435 (violet light) the minimum occurs at
az ~ 1.026 radians, and so the rainbow angle is about 7 — D(a2) = 40.6°.
cos o
kcosfB’
3. At each reflection or refraction. the light is bent in a counterclockwise direction: the bend at A is o — /3, the bend
at B is  — 23, the bend at C is again 7 — 2[3. and the bend at D is & — 8. So the total bend is

. . d
Another method: As in Problem 1. we can instead find D'(c) in terms of %’g. and then substitute Iﬁx— =

D(a) = 2(a — B) + 2(m — 28) = 2a — 68 + 2. as required. We substitute 8 = arcsin(__su;a) and

. 2
differentiate. to get D'(a) = 2 — bcosa , which is 0 when 3(:(;:(1 =4/1- <su]za) &
k+/1— [(sina)/k)?

9cos?a = k* —sin*a & Scosfa=k—1 & cosa=,/3(k?—-1). If k = %. then the minimum

2 °
-1 . 231
occurs at ;= arccos 4/ -———(4/3)8 ~ 1.254 radians. Thus, the

minimum counterclockwise rotation is D(ca) ~ 231°. which is equivalent 231° — 180° = 51°
to a clockwise rotation of 360° — 231° = 129” (see the figure). So the
rainbow angle for the secondary rainbow is about 180° — 129° = 51°. as
required. In general, the rainbow angle for the secondary rainbow is

7 —[27 — D(a)] = D(a) — .
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4. In the primary rainbow, the rainbow angle gets smaller as k gets larger, as we found in Problem 2. so the colors
appear from top to bottom in order of increasing k. But in the secondary rainbow, the rainbow angle gets larger as k
gets larger. To see this. we find the minimum deviations for red light and for violet light in the secondary rainbow.

. - 1.3318% — 1 ,
For k ~ 1.3318 (red light) the minimum occurs at a1 ~ arccos B a— ~ 1.255 radians, and so the

rainbow angle is D(a1) — 7 &~ 50.6°. For k ~ 1.3435 (violet light) the minimum occurs at

1.3435% — 1 : , . o
Q2 R arccos B a— ~ 1.248 radians. and so the rainbow angle is D(az2) — 7 ~ 53.6°. Consequently, the

rainbow angle is larger for colors with higher indices of refraction, and the colors appear from bottom to top in order
of increasing k, the reverse of their order in the primary rainbow.

Note that our calculations above also explain why the secondary rainbow is more spread out than the primary
rainbow: in the primary rainbow. the difference between rainbow angles for red and violet light is about 1.7°,

whereas in the secondary rainbow it is about 3°.

4.2 The Mean Value Theorem

1 f(z) =2 -4z + 1, [0,4]. Since f is a polynomial. it is continuous and differentiable on R. so it is continuous on
[0, 4] and differentiable on (0,4). Also. f(0) =1 = f4). f(e)=0 & 2c-4=0 & c=2 whichisin

the open interval (0,4). so ¢ = 2 satisfies the conclusion of Rolle's Theorem.
2 f(x) =2® - 32% + 2z + 5. [0, 2]. £ is continuous on [0, 2] and differentiable on (0,2). Also. f(0) =5 = f(2).

F©=0 & 32— 6c42=0 & c=0EVIH-2 V?‘”:u%ﬁ,bmhm(o,z)

3. f(z) = sin 27z, [~1,1]. f. being the composite of the sine function and the polynomial 27z, is continuous and
differentiable on R, so it is continuous on [~1,1] and differentiable on (—1, 1). Also. f(—1) =0 = £(1).
f(©)=0 & 2mcos2mc=0 & cos2me=0 <« 2me=+%+4+2m & c= +i+nlfn=0o0r

*lthenc=+3 +2isin (-1,1).

4. f(z) = zv/x+6. [~6,0]. f is continuous on its domain. [—6. 00). and differentiable on (—6,00), so it is
3c+ 12

— = =90
2yc+6

continuous on [—6, 0] and differentiable on (—6, 0). Also, f(—=6) =0 = f(0). f'(c) =0 <
< c¢= —4.whichisin (—6,0).
5. f@)=1-a*% f(-1)=1-(-1)P=1-1=0= f(). f(z) = =223 50 f'(c) = 0 has no

solution. This does not contradict Rolle’s Theorem. since £(0) does not exist. and so f is not differentiable

on (—1,1).

6 f@)=@-1)7% fO)=0-12=1=(2-1)2= 2 fl@)=-2@-1)"° = f(2)is

never 0. This does not contradict Rolle’s Theorem since 1'(1) does not exist.
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f8)—f0) 6—-4 1 7)— f(1 2-5 1

1. s=0 ~ 8 :Z‘Thevaluesofc 8. f(g_{( ) =5 =—§.Thevaluesofc
which satisfy f’(c) = 7 seem to be about which satisfy f'(c) = —3 seem to be about
c=0.8.32.44.and 6.1. c=1.1,2.8,4.6.and 5.8.

9. (a). (b) The equation of the secant line is © fz)=z+4/z = [f(x)=1- 4/z>.
y—5=8é5_15(x*1) o Sof'(c)-——% = 2=8 = c=2+2and
— 4 _ - .
yZ%w—l—%‘ f(c)42\/§+2—\7—§#3\/§.Thus,anequat10notthe
tangent lineisy —3v2 = 3(z —2v2) &
10
y=31z+2V2
10
0 10
0 10
10. (a) 5 (b) The slope of the secant line is 2, and its equation is

y=2z.f(z)=m3—23: = f'(z)=3z" -2

sowesolve f'l(c) =2 = 32 =4 =

_ 3 4
} c= :i:%'é3 ~ 1.155. Our estimates were off by about
0.045 in each case.
-5

It seems that the tangent lines are parallel

to the secant at z =~ £1.2.

1. f(z) = 3z + 2z + 5, [~1,1]. f is continuous on [—1, 1] and differentiable on (—1, 1) since polynomials are

continuous and differentiable on R.  f'(c) = —J%:—i(—a) & 6c+2= f(i)—;(]:(l—)l) = 10; 6 _ 2 o

6c=0 < c=0,whichisin(-1,1).



12.

13.

14.

15.

16.

17.

18.

19.
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f(x) =2®+2 1, [0,2)]. fis continuous on [0, 2] and differentiable on (0,2). f'(c) = 12 = /(0

2-0
3C2+1:9—TM & 3=5-1 & 02:§ & c:i%‘butonly%isin(OQ).
f(z) =e7%%.[0,3]. f is continuous and differentiable on R. 5o it is continuous on [0, 3] and differentiable on
0,3). f'(c) = W & 27 = %_060 o ezl _66_6 & —2c= ln(1 _66_6>
o c:~%m<l1fﬁ>%08WAmmMMnm3)
f(z) = = j_ 5 [1,4]. fis continuous on [1,4] and differentiable on (1.4). f'(c) = %{{(a) &
2 :§—§ < (c+2)?=18 @c:—wﬂ¢id+3ﬁzzmmm@@

ct2?  4-1
f@)=lz—1]. f(3) - f(0)=3—1]—1]0— 1] = 1. Since f'(c) = —lifc <1 and f'(c) = 1 ife > 1.

f'(€)(3 = 0) = +3 and so is never equal to 1. This does not contradict the Mean Value Theorem since F'(1) does

not exist.

f(z) = 21 f2)=f(0)=3—-(-1)=4. f'(z) = 1z —(;)_—11)(;-}- D _ G :21)2. Since f'(z) < 0 for

all z (except z = 1), f'(c)(2 — 0) is always < 0 and hence cannot equal 4. This does not contradict the Mean

Value Theorem since f is not continuous at z = 1.

Let f(z) = 1+ 2z + 2 + 42° Then f(-1) = —6 < 0 and f(0) = 1> 0. Since £ is a polynomial. it is
continuous, so the Intermediate Value Theorem says that there is a number ¢ between —1 and 0 such that fle)=0.
Thus, the given equation has a real root. Suppose the equation has distinct real roots @ and b with a < b. Then
f(a) = f(b) = 0. Since £ is a polynomial. it is differentiable on (a, b) and continuous on [a, b]. By Rolle's
Theorem, there is a number r in (a, b) such that f'(r) = 0. But f'(z) = 2 + 322 + 2024 > 2forall z, so f'(z)
can never be 0. This contradiction shows that the equation can’t have two distinct real roots. Hence. it has exactly
one real root.

Let f(z) = 2z — 1 — sinz. Then f(0)=-1<0and f(7/2) =7 — 2> 0. [ is the sum of the polynomial

2z — 1 and the scalar multiple (—1) - sin z of the trigonometric function sin z. so f is continuous (and
differentiable) for all 2. By the Intermediate Value Theorem, there is a number ¢ in (0,7/2) such that f(c) = 0.
Thus. the given equation has at least one real root. If the equation has distinct real roots a and b with q < b, then
f(a) = f(b) = 0. Since f is continuous on [a, b] and differentiable on (a, b). Rolle’s Theorem implies that there is

anumber r in (a, b) such that f'(r) = 0. But f'(r) =2 —cosT > 0since cosr < 1. This contradiction shows that

the given equation can't have two distinct real roots. so it has exactly one real root.

Let f(z) = 2® — 15z + c for z in [—2,2]. If £ has two real roots @ and b in [—2.2]. with a < b, then

f(a) = f(b) = 0. Since the polynomial f is continuous on [a. b] and differentiable on (a, b). Rolle’s Theorem
implies that there is a number r in (a,b) such that f'(r) = 0. Now f'(r) = 3r% — 15. Since 7 is in (a, b). which is
contained in [—2, 2], we have [r| < 2.50 72 < 4. It follows that 3r® — 15 < 3.4 — 15 = -3 < 0. This contradicts

f'(r) = 0. so the given equation can’t have two real roots in [~2, 2]. Hence, it has at most one real root in [-2,2].
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20.

21.

23.

24.

25.

26.

f(x) = z* + 4z + c. Suppose that f(z) = 0 has three distinct real roots a. b, d where a < b < d. Then

f(a) = f(b) = f(d) = 0. By Rolle’s Theorem there are numbers c1 and ¢z witha < c1 < band b < c2 < dand
0 = f'(c1) = f'(c2).s0 f'(z) = 0 must have at least two real solutions. However

0= f'(z) =42® + 4 = 4(2® + 1) = 4(z + 1) (¢® — = + 1) has as its only real solution z = —1. Thus. f(z) can

have at most two real roots.

(a) Suppose that a cubic polynomial P(z) has roots a1 < a2 < a3 < a4, 50 P(a1) = P(az2) = P(a3) = P(as).
By Rolle’s Theorem there are numbers c1. c2. €3 witha; < ¢1 < a2, az < ¢z < az and as < c3 < a4 and
P'(c1) = P'(c2) = P'(cs) = 0. Thus, the second-degree polynomial P’ () has three distinct real roots, which
is impossible.

(b) We prove by induction that a polynomial of degree n has at most n real roots. This is certainly true forn = 1.
Suppose that the result is true for all polynomials of degree n and let P(z) be a polynomial of degree n + 1.
Suppose that P(z) has more than n + 1 real roots, say a1 < a2 < az < -+ < @nt+1 < An42- Then
P(a1) = P(az) = - -- = P(an+2) = 0. By Rolle’s Theorem there are real numbers c1, . .. ,Cnt1 With
a1 <1 < azs. .. g1 < Cng1 < anpzand P'(c1) = = P’(cnt+1) = 0. Thus, the nth degree
polynomial P’(z) has at least n. +- 1 roots. This contradiction shows that P(z) has at most n + 1 real roots.

. (a) Suppose that f(a) = f(b) = 0 where a < b. By Rolle’s Theorem applied to f on [a, b] there is a number ¢ such

thata < ¢ < band f'(c) = 0.

(b) Suppose that f(a) = f(b) = f(c) = 0 where a < b < c. By Rolle’s Theorem applied to f(z) on [a.b] and
[b. c] there are numbers a < d < band b < e < ¢ with f/(d) = 0 and f'(e) = 0. By Rolle’s Theorem applied
to f'(z) on [d, €] there is a number g with d < g < e such that f’(g)=0.

(c) Suppose that f is n times differentiable on R and has n + 1 distinct real roots. Then f (") has at least one real
root.

By the Mean Value Theorem. f(4) — f(1) = f'(c)(4 — 1) for some ¢ € (1,4). But for every c € (1,4) we have
f'(c) > 2. Putting f'(c) > 2 into the above equation and substituting f(1) = 10. we get
f(4)=f(1)+ f(c)4-1) =10+ 3f'(c) > 10+ 3- 2 = 16. So the smallest possible value of f(4) is 16.

If3 < f/(x) < 5 for all z. then by the Mean Value Theorem, £(8) — £(2) = f'(c) - (8 — 2) for some ¢ in (2,8].
(f is differentiable for all z. so. in particular, f is differentiable on (2, 8) and continuous on (2, 8]. Thus, the
hypotheses of the Mean Value Theorem are satisfied.) Since f(8) — f(2) = 6f'(c) and 3 < f'(c) < 5. it follows
that6 -3 < 6f'(c) <65 = 18 < f(8)— f(2) <30.

Suppose that such a function f exists. By the Mean Value Theorem there is a number 0 < ¢ < 2 with

f'(e) = L(_Q_;;%@ = g But this is impossible since f'(z) <2 < 5 for all z. so no such function can exist.
Let h = f — g. Then since f and g are continuous on [a, b] and differentiable on (a,b). so is h, and thus h satisfies
the assumptions of the Mean Value Theorem. Therefore. there is a number ¢ witha < ¢ < b such that

h(b) = h(b) — h(a) = R (c)(b— a). Since h'(c) < 0. R (c)(b—a) < 0,50 f(b) — g(b) = h(b) < 0 and hence
F(b) < g(b).



2].

28.

29.

30.

31.

32.

33.
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We use Exercise 26 with f(z) = V1 +2.g(2z) = 1 + $z.and a = 0. Notice that f(0) =1=g(0) and

f(z) = 2\/—% < ;— = ¢'(z) for z > 0. So by Exercise 26. f(b) < 9(b) = VI+b<1+ibford>o0.

Another method: Apply the Mean Value Theorem directly to either f(z) =1+ Iz — T+ zor g(z) =1+
on [0, b].

[ satisfies the conditions for the Mean Value Theorem. so we use this theorem on the interval [—b, b]:

W = f'(c) for some ¢ € (—b.b). But since Jisodd. f(—b) = — f(b). Substituting this into the above

OLIO) _py SO

ation. et
equation. we g % b

Let f(z) = sinz and let b < a. Then f(z) is continuous on [b. a] and differentiable on (b, a). By the Mean Value
Theorem. there is a number ¢ € (b, a) with sina — sin b = f(a) = f(b) = f'(c)(a - b) = (cos c)(a —b). Thus,
sina —sinb| < [cose| b —a| < |a —b|. If a < b, then sina — sinb| = [sinb — sina| < |b — al =la—0b|.If

a = b, both sides of the inequality are 0.

Suppose that f'(z) = c. Let g(x) = cz, so g'(x) = c. Then. by Corollary 7, f(z) = g(z) + d, where d is a
constant. so f(z) = cx + d.

Forz > 0. f(z) = g(z). so f'(z) = ¢/(z). For z < 0. f'(x) = (1/z) = —1/z* and

9'(x) = (1+1/z) = —1/22 so again f'(z) = g’(z). However. the domain of g(z) is not an interval [it is
(=00,0) U (0, 00)] so we cannot conclude that f — g is constant (in fact it is not).

Let f(z) = 2sin™' 2 — cos™ (1 - 2z%). Then

f(2) = —=2 i 2 b 0 (since > 0). Thus. f'(z) = 0 f
- - = - = S T . 1hus. Tr) = (&)
V1—a? \/1_(1_2332)2 V1—22 2z1— 22 - '

allz € (0,1). Thus, f(z) = C on (0,1). To find C. let z = 0.5. Thus.
2sin™'(0.5) — cos1(0.5) = 2(%) - 3 = 0 = C. We conclude that f(z) =0forzin(0,1). By continuity
of f. f(z) = 0 on [0, 1]. Therefore. we see that flx) =2sin"1g - cos™' (1 - 20°) =0 =

2sin"ly = cos™' (1 - 2z%).

. -1
Let f(z) = arcsm(lx 1) — 2 arctan \/z + Z. Note that the domain of fis [0,00). Thus.
! 1 (x+1) = (z-1) 2 1 1 1
f(@) = BERNEI R
1 (m—l)Q (.r+1)2 l+z 2z \/E(x—}-l) ﬁ(m—}-l) 0. Then
V' e+t

f(@) = C on (0, 00) by Theorem 5. By continuity of £, f(x) = C on [0,00). Tofind C. weletz =0 =
arcsin(—1) — 2arctan(0) + 7=C = —53=0+Z =0=C. Thus. flz)=0 =

. r—1
a1c51n<z+ 1) = 2arctan /z — z.
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34

35.

36.

v(1/6) —v(0) 50 — 30
1/6-0  1/6

Value Theorem. there is a number ¢ such that 0 < ¢ < é with v’ (¢) = 120. Since v'(t) is the acceleration at time ¢,

Let v(t) be the velocity of the car ¢ hours after 2:00 P.M. Then

= 120. By the Mean

the acceleration ¢ hours after 2:00 P.M. is exactly 120 mi/h%.

Let g(t) and h(t) be the position functions of the two runners and let f(t) = g(t) — h(t). By hypothesis.
£(0) = g(0) — h(0) = 0and f(b) = g(b) — h(b) = 0. where b is the finishing time. Then by the Mean Value

Theorem. there is a time ¢, with 0 < ¢ < b, such that f’(c) = i%@ But f(b) = f(0) = 0.s0 f'(c) = 0.

Since f'(c) = g'(c) — B'(c) = 0. we have g'(c) = R (c). So at time c. both runners have the same speed
g'(c) = h'(e).
Assume that f is differentiable (and hence continuous) on R and that f'(z) # 1 for all z. Suppose f has more than

one fixed point. Then there are numbers a and b such that @ < b. f(a) = a.and f(b) = b. Applying the Mean

Value Theorem to the function f on [a, b]. we find that there is a number ¢ in (a,b) such that f'(c) = L(—bl))—_—f(a—)
—a
b—
But then f'(c) = b—g — 1, contradicting our assumption that f'(x) # 1 for every real number . This shows that
—a

our supposition was wrong, that is, that f cannot have more than one fixed point.

4.3 How Derivatives Affect the Shape of a Graph

1.

(a) f is increasing on (0,6) and (8,9).

(b) f is decreasing on (6,8).

(c) f is concave upward on (2, 4) and (7.9).

(d) f is concave downward on (0,2) and (4,7).

(e) The points of inflection are (2, 3). (4, 4.5) and (7,4) (where the concavity changes).

. (a) f is increasing on (1,~3.8) and (5,~6.5).

(b) f is decreasing on (0, 1). (=3.8, 5), (~6.5,8). and (8,9).
(¢) f is concave upward on (0,3) and (8,9).
(d) f is concave downward on (3,5) and (5,8).

(e) The point of inflection is (3,~ 1.8) (where the concavity changes).

. (a) Use the Increasing/Decreasing (I/D) Test.

(b) Use the Concavity Test.

(c) At any value of = where the concavity changes, we have an inflection point at (z, f(x)).

. (a) See the First Derivative Test.

(b) See the Second Derivative Test and the note that precedes Example 7.

5. (a) Since f'(z) > Oon (1.5). f is increasing on this interval. Since f'(z) < 0 on (0,1) and (5.6). f is decreasing

on these intervals.
(b) Since f'(z) =0atz =1 and f' changes from negative to positive there, f changes from decreasing to
increasing and has a local minimum at & = 1. Since f'(z) =0atx =5 and f’ changes from positive to

negative there, f changes from increasing to decreasing and has a Jocal maximum at x = 5.



SECTION 4.3 HOW DERIVATIVES AFFECT THE SHAPEOFAGRAPH O 281

6. (a) f'(x) > 0 and f is increasing on (0, 1) and (3,5). f'(z) < 0 and f is decreasing on (1,3) and (5, 6).
(b) Since f'(z) =0atz = 1and z = 5 and f’ changes from positive to negative at both values, f changes from
increasing to decreasing and has local maxima at z = 1 and z = 5. Since f'(z)=0atz =3and f changes

from negative to positive there, f changes from decreasing to increasing and has a local minimum at z = 3.

1. There is an inflection point at = 1 because f"(z) changes from negative to positive there. and so the graph of f
changes from concave downward to concave upward. There is an inflection point at z = 7 because f'(z) changes
from positive to negative there, and so the graph of f changes from concave upward to concave downward.

8. (a) f is increasing on the intervals where f'(x) > 0. namely. (2.4) and (6,9).

(b) f has a local maximum where it changes from increasing to decreasing, that is. where f' changes from positive
to negative (at x = 4). Similarly, where f’ changes from negative to positive, f has a local minimum (atz =2
and at x = 6).

(c) When f' is increasing, its derivative f" is positive and hence, f is concave upward. This happens on (1, 3).
(5,7). and (8,9). Similarly, f is concave downward when f" is decreasing—that is, on (0, 1). (3, 5),
and (7,8).

(d) f has inflection points at z = 1, 3, 5, 7. and 8. since the direction of concavity changes at each of these values.

9. The function must be always decreasing and concave downward. y

—

0 \x
10. (a) The rate of increase of the population is initially very small, then gets larger until it reaches a maximum at about
t = 8 hours, and decreases toward 0 as the population begins to level off.

(b) The rate of increase has its maximum value at ¢ = 8 hours.
(¢) The population function is concave upward on (0, 8) and concave downward on (8,18).
(d) Att = 8, the population is about 350, so the inflection point is about (8, 350).

N @fle)=2"-120+1 = f(z)=322-12= 3(z +2)(z - 2).
We don’t need to include 3" in the chart to determine the sign of f'(z).

Interval z+2 z—2 f'(z) f

< -2 - - + increasing on (—oo, —2)
-2<z<?2 + - - decreasing on (-2, 2)

x>2 + + + increasing on (2, co)

So f is increasing on (—oo, —2) and (2, 00) and f is decreasing on (-2, 2).
(b) f changes from increasing to decreasing at £ = —2 and from decreasing to increasing at z = 2. Thus.
f(=2) =17 is a local maximum value and f(2) = —15is a local minimum value.

© f'(x) =6z. f(2) >0 « z>0 and f”
and concave downward on (

at (0, £(0)) = (0, 1).

() <0 & =z <0. Thus, fis concave upward on (0, 0o)
—00,0). There is an inflection point where the concavity changes,
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12. (@) f(z) =5 322 +2° = f'(z)=—6z+3z” =3z(z —2). Thus. f'(z) >0 ¢ =z <Oorz>2and
f'(z) <0 & 0<z<2. Sofisincreasing on (—o00,0) and (2,00) and f is decreasing on (0,2).
(b) f changes from increasing to decreasing at z = 0 and from decreasing to increasing at z = 2. Thus. f(0) = 5 is
a local maximum value and f(2) = 1 is a local minimum value.

©) f'(z) = —6+6x="6(x—1). f'(z)>0 & z>land f’(z) <0 < x <1 Thus. fisconcave
upward on (1,00) and concave downward on (—o0, 1). There is an inflection point at (1, 3).

13. () fx)=2*-22+3 = f'(x)= 45 — 4z = 4z(2® — 1) = dz(z + 1)(z - 1).

Interval z+1 x z—1 f(z) f

< -1 - - - - decreasing on (—oo, —1)
-1<2<0 —+ — - + increasing on (—1,0)

<zl + + - - decreasing on (0, 1)

z>1 + + + + increasing on (1, 00)

So f is increasing on (—1,0) and (1, 00) and f is decreasing on (—oo0, —1) and (0, 1).
(b) f changes from increasing to decreasing at T = 0 and from decreasing to increasing at x = —land z = 1.
Thus, £(0) = 3 is a local maximum value and f(£1) = 2 are local minimum values.

© f'(x) = 1227 —4 = 12(z% - 1) = 12( + 1/V3) (z - 1V3). f"(@)>0 & z<-1/V3or
z>1/V/3and f'(z) <0 & —1/4/3 < x < 1/+/3. Thus. f is concave upward on (—00, —V/3/3) and
(v/3/3, 00) and concave downward on (=v/3/3.4/3/3). There are inflection points at (£V3/3,%2).

2 2 2
14. (a) f(z) = NN fl(z) = (@ +3(’l(22f_)3)2$ (22) = (;c26_f3)2‘ The denominator is positive so the sign

z2+3
of f'(z) is determined by the sign of . Thus. f(z)>0 & z>0andf'(z) <0 & =< 0.So fis
increasing on (0, 0c) and f is decreasing on (—00,0).
(b) f changes from decreasing to increasing at & = 0. Thus, f(0) = 0 is a local minimum value.

(z? +3)%(6) — 6z - 2(z® +3)(2z) _ 6(z* + 3) [¢? + 3 — 427

(©) f"(x) =

(=% + 3)2)? (22 +3)*
_6(3-32") _ —18(z+ 1)(= — 1)
T (@2 +3)3 (z2 +3)3 '

f'(z)>0 & —-l<z<land f'(z) <0 & z<-lorzx>Ll Thus, f is concave upward on (—1.1)

and concave downward on (—oo, —1) and (1, 00). There are inflection points at (£1, 1)

15. (a)f(w):x—Zsina:on(O,?ﬂr) = f'(z)=1-2cosz. f'(z)>0 < 1—-2cosz>0 & cosz<j

7 .
& §<a:<%"or7—"<m<37r.f’(:c)<0 & cosT >3 & O<z<Zor®F<z<F.Sofis

3
increasing on (%, %¢) and (%= ,3m). and f is decreasing on (0,%) and (3z, ).

. . . . . . o o
(b) f changes from increasing to decreasing at © = %" and from decreasing to increasing atz = Fandatz = 3.

us

Thus, f(3F) = 5 + V/3 ~ 6.97 is a local maximum value and f(Z)=%- V3 ~ —0.68 and

FE)y =15~ /3 ~ 5.60 are local minimum values.

© f'(z) =2sinz >0 <« 0<z<mand2r <z <3m f'(z) <0 < 7w < x < 2m. Thus, f is concave

upward on (0,7) and (27, 3m), and f is concave downward on (, 27). There are inflection points at (m,m)

and (27, 27).
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16. (a) f(z) = cos’z — 2sinz, 0 <z <21 f'(z) = ~2coszsinz — 2cosx = —2cosz (1 + sin z). Note that
1+sinz >0 [sincesinz > —1], withequality < sinz=-1 < z= 3n/2 [since 0 < z < 27]
= cosz =0.Thus, f'(z) >0 & cosz<0 ¢ 7m/2<z<37r/2and f'(z) <0 < cosz >0
& 0<z<m/20r3m/2 <z < 2m Thus. fis increasing on (m/2,37/2) and f is decreasing on (0, 7/2)
and (37/2, 27).

(b) f changes from decreasing to increasing at = 7 /2 and from increasing to decreasing at x = 3w /2. Thus.
f(m/2) = —2is alocal minimum value and f(37/2) = 2 is a local maximum value.
(c) f"(z) = 2sinz (1 +sinz) — 2cos’ ¢ = 2sinz + 2sinz — 2(1 —sin’z)
=4sin’z + 2sinz — 2 = 2(2sinz — 1)(sinz + 1)

sof'(z) >0 & sinz>1 & F<e<Tandf'(z)<0 & sinz < § andsinz # -1 <«

O<z< Zor %" <z < 37" or 37" < & < 2m. Thus, f is concave upward on (%, 5?") and concave downward
on (0,%), (3, 22), and (3, 2m). There are inflection points at (£,-%) and (3, -1,

1. @y=fz) =ze* = [(z)=2e"+e" =e*(z+1) Sof'(z)>0 & z+1>0 & z>-1.
Thus. f is increasing on (—1, c0) and decreasing on (—oo, -1).
(b) f changes from decreasing to increasing at its only critical number, z = —1. Thus, f(=1) = —etisalocal
minimum value.
© fl(z)=e(z+1) = f'(z)= M)+ (z+1)e® =€e*(2+2).5 f"(2) >0 & z42>0 o
T > —2. Thus, f is concave upward on (—2, 00) and concave downward on (=00, —2). Since the concavity

changes direction at z = —2, the point (—2, —26—2) is an inflection point.

18. (@) y = f(z) =2%" = f'(z) = 2% + 2™ = z(z+2)e”. So f'(z) >0 & x(z+ 2)>0 &

either z < —2 or z > 0. Therefore f is increasing on (—oo, —2) and (0, 00), and decreasing on (—2,0).

(b) f changes from increasing to decreasing at = —2, so f(—2) = 4e~2 is a local maximum value. f changes
from decreasing to increasing at z = 0, so f(0) = 0is a local minimum value.

© f(z) = (z* +2z)e® = f'(@) = (2° + 2z)e® + € (22 + 2)=e"(®+4z+2). f'(z) =0 o
P4ar+2=0 o T=-2+V2 f(2)<0 -2-V2<z< —241/2. 50 f is concave
downward on (—2 — /2, -2 + \/5) and concave upward on (—oo, -2 — v/2) and (—2+ 2, o).
There are inflection points at (-2 — /2, f(—2-Vv2)) =~ (—3.41,0.38) and
(=242, f(-2+v2)) ~ (=0.59.0.19).

1
18. (@) y = f(z) = % (Note that f is only defined for z > 0.)

1 Inzx
_ 1,-1/2 — - —=
, o VE(l/z) lnz(zm ) VT 2z 2T 2-Ing
fl(z) = =T == —— >0 &
x z 2z 2z3/2
2-lnz>0 & hhz<2 o 2 < €2. Therefore f is increasing on (O, 62) and decreasing on (ez, oo)
2
(b) f changes from increasing to decreasing at z = e2, so f(ez) = l;e_z = 2 is a local maximum value.
e e
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© f'(z) = 20%2(~1/z) — (2 - nz)(3z?) _ —22'% 4+ 32'%(lnz — 2)
(2a3/2)? 17
2/?(=2+3Inz—6) 3lnz—8
43 T 4g5/2

ff2)=0 & hme=35 & =7 f(2)>0 & z> €8/3_s0 f is concave upward on (e%/3. 00)

and concave downward on (0, €®/?). There is an inflection point at (e8/3, %e“l/:”) ~ (14.39,0.70).

20. (a) y = f(z) = zlnz. (Note that f is only defined for z > 0.)

21.

fl(z)=z(l/z) +lmz=1+hz. f(z)>0 & hz+1>0 & hr>-1 < z> e L.
Therefore £ is increasing on (1/e, 0o) and decreasing on (0, 1/e).

(b) f changes from decreasing to increasing at z = 1/e. so f(1/e) = —1/e is a local minimum value.

(¢) f"(z) =1/x > 0forz > 0. So f is concave upward on its entire domain, and has no inflection point.

fl@)=2"-5z+3 = f'(z)=5z"—-5=>5@"+1)(z+1)(z—1)

First Derivative Test: f'(z) <0 = —l1<z<landf'(z)>0 = xz>lorz< —1. Since f' changes
from positive to negative at £ : —1. f(—=1) = 7 is a local maximum value; and since f’ changes from negative to
positive at z = 1, f(1) = —1is a local minimum value.

Second Derivative Test: f(z) = 20z%. f'(z) =0 & z ==l f'(-1)=-20<0 = f(-1)=Tisa
local maximum value. /(1) =20 >0 = f(1) = —1isalocal minimum value.

Preference: For this function, the two tests are equally easy.

_r
2 +4

_ (> +4)-1—=z(2z) _ 4—2* (2—{—1)(2—.7:).

= f'(2) (22 + 4) T @42 (a2 +4)2

flz) =

First Derivative Test: f'(z) >0 = —2<z <2and fl(x) <0 = =z >2o0rz < —2. Since f’ changes

from positive to negative at z = 2, f2) = }1 is a local maximum value; and since f’ changes from negative to

positive at z = —2, f(—2) = —1 is alocal minimum value.

Second Derivative Test:

(22 + 4)%(—2z) — (4 —2°) - 2(z” + 49)(2x)

1"
xTr) =
re @ + 27T
_ —22(2” +4)[(e* +4) +2(4 - z?)]  —2z(12 —z°)
- (x2 + 4)4 - (2 + 4)3
flz)=0 & z==%2 f'(-2)= L>0 = f(-2)= — 1 is a local minimum value.
f'2)=-&<0 = f(2)= 1 is alocal maximum value.

Preference: Since calculating the second derivative is fairly difficult, the First Derivative Test is easier to use for

this function.
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_ 1 .
B fa)=z+VI-z = f(a)=1+i1-2) 1/2(—1):I—WT_x.Notethatflsdeﬁnedfor

_1
l—z>0thatis.forz <1. f'(z) =0 = 2V1-z=1 = JVi-z=3 = 1l-z=1 =
T = %. f does not exist at z = 1, but we can’t have a local maximum or minimum at an endpoint.

First Derivative Test: f'(z) >0 = z < %and f'(z) <0 = 3 <z < 1. Since f’ changes from
positive to negative at z = 2. f(2) = 2 is a local maximum value.
s 1 ,
Second Derivative Test: f"(z) = —3(—3)(1—z) 3/2(-1) = ——. f"(})=-2<0 =

4(V1-7)
f(3) = 2 isalocal maximum value.
Preference: The First Derivative Test may be slightly easier to apply in this case.
2. (a) f(z) = 2*(z - 1)° =
f@)=z' 3@ -1+ (x—-1)% 42° = 2%z — 1)? Bz +4(z — 1)] = 2%z — 1)*(Tz — 4)
The critical numbers are 0, 1, and %
(b) f"(z) =32z - 1)*(Te — 4) + 2° - 2(z — 1)(7Tz — 4) + 23(z — 1)2 . 7
2 (z — 1) [3(x — 1)(Tz — 4) + 22(7x — 4) + Tz(z — 1)]

—

i

Now f”(0)
(%) = (%)z(é -1)[0+0+ 7(%)(% -1)] = (%)2(~%)(4)(—%) > 0, so there is a local minimum
atz = 3.

(¢) f"is positive on (—oo, 0), negative on (0, ). positive on (7.1). and positive on (1,00). So f has a local

maximum at z = 0, a local minimum at z = i;. and no local maximum or minimum at z = 1.

25. (a) By the Second Derivative Test, if f/(2) = 0 and f"(2) = =5 < 0. f has a local maximum at z = 2.

(b) If f(6) = 0, we know that f has a horizontal tangent at z = 6. Knowing that f”(6) = 0 does not provide any
additional information since the Second Derivative Test fails. For example. the first and second derivatives of
y=(z-6)"y=— (z—6)" andy = (z — 6)° all equal zero for z = 6, but the first has a local minimum at
x = 6. the second has a local maximum at z = 6. and the third has an inflection point at z = 6.

26. f'(x) > 0 forall z # 1 with vertical asymptote £ = 1. so f is y
increasing on (—o0,1) and (1,00). f”(z) > 0ifz < lorz > 3.

and f"’(z) < 0if1 < z < 3. s0 [ is concave upward on (—oo, 1)

and (3, 00). and concave downward on (1, 3). There is an inflection

point when x = 3. /0 l/ 3 x

21. f(0)=f'(2) = f'(4) =0 < horizontal tangents at z = 0. 2. 4. J‘T
fll)>0ifz<0or2<z<4 = [ is increasing on (—o0, 0)

and (2,4). f'(z) < 0if0 <z <20rz >4 = f is decreasing
on (0,2) and (4,00). f"(z) >0ifl <z <3 = f is concave
upward on (1,3). f"(z) < Oifz <lorz >3 = f is concave

downward on (—c0, 1) and (3, 00). There are inflection points when

T = land 3.
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28. y f'(1)=f'(-1) =0 = horizontal tangents at z = =%1.
\/\ f'(z) <0if |z <1 = fisdecreasingon (—1.1). f'(z) > 0if
1
a \/\ 1<|z|]<2 = fisincreasingon (—2,—1)and (1,2).
-10 1 ~x
f'(x) =—1if|z| >2 = the graph of f has constant slope —1

on (—o0o, —2) and (2,00). f"(z) < 0if —2<z <0 =

f is concave downward on (—2,0). Inflection point (0, 1).

29. f/(z) > 0if|z] <2 = fisincreasingon (—2,2). f'(z) < 0if|z| >2 = fisdecreasing on (—00.—2)

and (2,00). f'(=2) =0 = horizontal tangentat z = —2. lim2 |f'(z)] =00 = thereis a vertical asymp-

tote or vertical tangent (cusp) at z = 2. f”(z) > 0ifz #2 = f is concave upward on (—00,2) and (2, 00).

AL

ix=2 '
30. y f'(z) > 0if |g| <2 = fisincreasing on (=2.2). f'(z) <0if
T T || >2 = fisdecreasing on (—0o, —2) and (2, 00). f'(2)=0.
y=-1 R so f has a horizontal tangent (and local maximum) at z = 2.
-------------------- IILIIOIO f(z)=1 =y = lisahorizontal asymptote.

f(—z) = —f(z) = fisanodd function (its graph is symmetric
about the origin). Finally, f”(z) < 0if 0 <z < 3 and f'(z) > 0if
£ > 3.s0 f is CD on (0, 3) and CU on (3, 00).

31. (a) f is increasing where f’ is positive, that is. on (0,2). (4.6), and (8, 00); and decreasing where f’ is negative,
that is. on (2,4) and (6, 8).
(b) f has local maxima where f' changes from positive to negative., at & = 2 and at z = 6, and local minima where

f' changes from negative to positive. at £ = 4and atz = 8.

(c) f is concave upward (CU) where f' is increasing. that is, on (3.6) (e)
and (6. 00), and concave downward (CD) where f' is decreasing, that
is, on (0, 3).

(d) There is a point of inflection where f changes from being CD to

being CU. that is. at z = 3.
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32. (a) f is increasing where f' is positive. on (1,6) and (8. cc). and decreasing where f’ is negative, on (0, 1)
and (6, 8).
(b) f has a local maximum where f’ changes from positive to negative. at = 6. and local minima where f

changes from negative to positive, atz = 1 and at z = 8.

(c) f is concave upward where f’ is increasing, that is. on (0, 2). (3, 5). (e) v
and (7, 0o), and concave downward where f’ is decreasing. that is, on

(2.3) and (5,7).

(d) There are points of inflection where f changes its direction of o

concavity,atx =2, x =3,z =5andz = 7.

3. (a) flz) =220 -3z - 122 = f'(z)=62°—6z—12= 6(z> —z—2) =6(z — 2)(z +1). f'(z) >0
& r<-lorz>2and f'(z) <0 & -1<z<2 Sofis increasing on (—o0, —1) and (2, 00). and f
is decreasing on (—1, 2).

(b) Since f changes from increasing to decreasing at z = —1. f(=1) = 7is alocal maximum value. Since f
changes from decreasing to increasing at ¢ = 2, f(2) = —20 is a local minimum value.

© f'(z)=6(2z~1) = f’(z)>00on (3.00) and f”(z) < O on (d) -1,7) ¥
(—00,2). So f is concave upward on (3.00) and concave /

N

downward on (—oo, §). There is a change in concavity at =

and we have an inflection point at (4, —12).

(2,.-20)

3. (a) f(x) =2+3z—-2° = f'(z)=3-3z%= =3(z* 1) = -3(z + 1)(z - 1). fliz) >0
“l<z<land f'(z) <0 & z<—-lorz>1. So f is increasing on (—1,1) and f is decreasing on
(=00, —1) and (1, 00).

(b) f(—1) = 0is a local minimum value and f(1) = 4is alocal (d)
maximum value. 2N
© f’(z) = =6z = f"(z)>0on(—oo, 0) and f”(z) < O on (0.2)
(0,00) . So f is concave upward on (—00,0) and concave downward
on (0, 00). There is an inflection point at (0, 2). 1.0 © \ *
3. @ f(z) =2" - 62> = f'(z)=42° 122z = 4z(z® —3) = Owhenz = 0, £1/3.
Interval 4x z? -3 f(z) f
z< -3 - + - decreasing on (—o0, —v/3)
-V3<z<0 - - + increasing on (—+/3,0)
0<z<vV3 + - - decreasing on (0, v/3)
z >3 + + + increasing on (v/3, 00)
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(b) Local minimum values f(£v/3) = -9, (d) \ Y ,
0
local maximum value f(0) =0 A
-1.-5
© f'(z) =122 -12=12(2>-1) >0 & z*>1 & \ \) (1.-5)
_5-..

|z} >1 & 2 >1lorz < -1 50 fisCUon (—oo,—1),(1,00)

and CD on (—1, 1). Inflection points at (+1, —5) (=y3.-9) -0t (J3.-9)

36. (2) g(z) =200 4+ 8z° + 2! = ¢'(z) =242+ 42® = 42*(6 + x) = 0 when £ = —6 and when z = 0.
g(z)>0 & z>-6(x#0)andg'(x) <0 & x < —6.50gisdecreasing on (—oo, —6) and g is

increasing on (—6, co), with a horizontal tangent at z = 0.

(b) g(—6) = —232 is a local minimum value. d) y
. . (0.200) J
There is no local maximum value.
, ) 100
(©) ¢’ (z) = 48z + 122” = 12z(4 + z) = 0 when z = —4 and when s
I 0 X
£=09¢"(z)>0 & z<-dorz>0andg’(z) <0 & (4.=56)
—4 <z <0,50gisCUon (—o0,—4) and (0,00). and g is CD on —6.-232)

(—4,0). Inflection points at (—4, —56) and (0, 200)

3. (a) h(z) = 3¢° —52° +3 = HK(z)=15z" — 152" = 152%(2® — 1) = 0 when z = 0, 1. Since 1522 is
nonnegative, h'(z) >0 < 22>1 & |zg/>1 & xz>lorz<—Lsohis increasing on

(—o00, —1) and (1, 00) and decreasing on (=1, 1), with a horizontal tangent at 2 = 0.
(b) Local maximum value h(—1) = 5, local minimum value h(1) =1

(©) R (z) = 60z° — 30z = 30z (22> — 1) @ i Y
= 60z(z + %) (2 - %)

h'(z) > 0 whenz > % or—\% <x <0,50hisCUon
(1. 1)

(—%,0) and (%,oo) and CD on <Aoo, —ﬁ) and (07 %) r 0 x

Inflection points at (0, 3) and (:t% ,3F %\/5) [about

(—0.71,4.24) and (0.71,1.76)].
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38. (a) h(z) = (2? — 1)3 = h(z)=6z(z® - 1)2 >0 & x>0 (z#1).s0hisincreasing on (0, 0o) and
decreasing on (—o0, 0).
(b) h(0) = —1 is a local minimum value.

(c) ' (z) = 6(z* — 1)2 +242° (2% - 1) = 6(z® — 1) (52° - 1). The roots 1 and :i:% divide R into five

intervals.
Interval z? -1 52% — 1 R (z) Concavity
< -1 + + + upward
1
-l<z< -~z - + - downward
~E<z< 7 - - + upward
;}—g <z<l1 - + — downward
T>1 + + + upward
From the table, we see that k is CU on (—oo, —1). (d)

(_\/Lg, ﬁ) and (1, 0o). and CD on <~1, —%) and (ﬁ 1)~

Inflection points at (1, 0) and (:i:ﬁ, —16—45)

9. () Az) =zvVz+3 =

A(z =m-ix+3‘1/2+\/m+3~1=——x + vz + :m+2($+3)= 3:1:+6A
(=) 2 ) 2vz + 3 2Vz +3 2z +3

The domain of A is [~3, 00). A'(z) > 0forz > —2and A'(z) < 0for -3 < 2 < —2.s0 A is increasing on

(=2, 00) and decreasing on (-3, —2).

(b) A(—2) = —2is alocal minimum value. (d) 3
1
2V +3-3—(3z+6) - 2t
(C) A”(l’) — J: ( v 2) vV + 3 _3
(2 VT 4+ 3) 1 5 >
_ 6(z+3)—(Bz+6)  3z+12 3z +4) F—2
4(x + 3)3/2 C 4(x+3)3/2 " 4(z +3)3/2

A"(x) > 0 forall z > —3, s0 A is concave upward on (—3, 00).

There is no inflection point.

, _ 2 2- Yz
4. () B(z) =32*°* ~2 = B(z)=2 /3 _1- 2 _1_ / i
(z) (z) z 7z Tz . B'(z) >0if0 < z < 8 and

B'(z) <0ifz <0orz > 8.s0 Bis decreasing on (—c0,0) and (8, ). and B is increasing on (0, 8).
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(b) B(0) = 0 is a local minimum value.

B(8) = 4 is a local maximum value.

_ -2
(c) B"(z) = 227/ = PWVEREY B"(z) < 0forallz # 0. Bis T

concave downward on (—oo, 0) and (0, co). There is no inflection

point.

4(x +1)
3Vz2

C'(z) > 0if =1 <z < 0orz > 0and C'(z) < 0forz < —1.s0 C is increasing on (—1,00) and C'is

8. (a) C(z) = z"/3(z + 4) = 2*/* +4z'? = C'(z) = §m1/3 + %z_2/3 = %x_Q/B(x +1) =

decreasing on (—oo, —1).
(b) C(—1) = —3 is a local minimum value. (d)

4(z —2) (2.632)
9Yzs

C"(z) < 0for0 <z <2and C”(z) > Oforz < Oandz > 2,s0

(C) C”(.’L‘) — %$_2/3 _ %:L‘_5/3 — %$~5/3 (’I‘ _ 2) —

C' is concave downward on (0, 2) and concave upward on (—o0,0)

and (2. 00). There are inflection points at (0,0) and _‘\J g
(2,6V2) ~ (2,7.56). (-1.-3)
4z®

82. (a) f(z) =In(z* +27) = f'(z)= pransrd f'(z) > 0ifz > 0and f'(z) < 0ifz <0, s0 fis increasing
on (0, 00) and f is decreasing on (—00, 0).
(b) £(0) = In27 ~ 3.3 is a local minimum value.

(z* +27)(122%) — 42°(42°) _ 47° [3(x* +27) — 4z*]

(© f"(z) = (@ 1277 CESIE (d) y
42’81 —z')  —42’(2® +9)(z +3)(x — 3)
(x4 +27)2 (xz* +27)2
F(z) > 0if —3 <z <0and 0 <z < 3.and f"(z) <Oifz < -3
or > 3. Thus. f is concave upward on (—3.0) and (0,3) [hence I?
on (—3,3)] and f is concave downward on (—o0, —3) and (3, 00). -3 0 3 X

There are inflection points at (£3,1n 108) =~ (43, 4.68).

43. (a) f(8) =2cosf —cos20, 0 < 0 < 2.
f'(6) = —2sinf +2sin20 = —25in 6 + 2(2sin 6 cosf) = 2sinf (2cos 6 —1).

Interval sin 0 2cosf — 1 () f
0<0<3% + + + increasing on (0, )
F<o<m + - — decreasing on (%, )
T<O< L - - + increasing on (7, 3
<< - + - decreasing on (3, 27)

(b) f(%) = % and f(%') = % are local maximum values and f(7) = —3 is a local minimum value.
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(c) f'(6) = —2sinf + 2sin20 = (d)
f(0) = —2cosf+4cos20 = —2cosf + 4(2cos? 0 — 1)

y 2
=2(4cos*0 — cosb — 2) m IP

0 Tlr T 3'11' 27;'0
1+ /33 L [1£33 3 iz
f'(0) =0 < cosf= — & 0 = cos 1(——8 > P 1P2
& 0= cos! (1—+8— V33> ~ 0.5678. (. -3)

_ 1—+v33
27 — cos™! <_1+8—\/£) ~ 5.7154. cos ™! <¥> ~ 2.2057. or 27 — cos ™! <—8—\/—> =~ 4.0775.

Denote these four values of 6 by ¢1. 4. 62, and 63. respectively. Then f is CU on (0,61), CD on (6, 62).
CU on (62, 63), CD on (63, 64). and CU on (4, 27). To find the exact y-coordinate for 8 = 0;. we have

2
1 1 1 33
f(01):2c0801—cos201:200501—(2c03201—1):2( +8\/§>~2< +8\/_> +1

=itV -5 VB -8B +1=32+2V8=2(1+V33) =y ~ 1.26.

Similarly, f(62) = & (1 — v/33) = y2 ~ —0.89. So f has inflection points at (61, y1). (62,y2). (03, 32).
and (04,y1).

M. () f(t) =t+cost. 2r<t<2r = (d) y
f'(t) =1 —sint > 0forall t and f'(t) = 0 when

sint=1 & t=-3%or 3. 50 f is increasing

-
on (—2m, 27).

(b) No maximum or minimum

© f7(t) = —cost >0 & te (-2 ~Z)U (T, 38) 50 fisCU on these intervals and CD on (—2m, —22),

(=%, %)-and (32, 2). Points of inflection at (%, +%) and (£3.47)

x Il’2

45, = = has in (—oo, — - ,00).
f(z) 2 1 @rlE=1) as domain (~o0, =1) U (—1,1) U (1, c0)
2, 2

. . z°/x . 1 1

] = — = lim — = 1  sow—1ic.
@ a:vﬂn:ll:joo f(.’ﬁ) wl}r:{loo (1’2 - 1)/.’1‘2 :cl{rﬂl:loo 1-— 1/.’1,‘2 1-0 1.soy Lisa HA.

2
linL o = oo since % — 1 and (2% — 1) > 0tasz — —1".soz = —1isa VA.

2

linllJr o =oosincez? — land (22 — 1) - 0" asz — 17.s02 = 1 isa VA,
2 2 2 2 2
x (@® —1)(2z) —2®(2z) _ 2z[(z® — 1) -z ] —2z .
b Xr) = = / = = —_——_—
(b) f(z) 22 _1 f(z) (22— 1) @ 1) @ 1) Since

(z2% - 1)? is positive for all z in the domain of f. the sign of the derivative is determined by the sign of —2z.
Thus. f'(z) > 0ifz < 0 (z # —1) and f'(x) <0ifz >0 (z #1). So fis increasing on (—oo, —1) and
(=1,0), and f is decreasing on (0, 1) and (1,00)
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(©) f'(x)=0 = =z =0and f(0) = 0is a local maximum value.

2 2/ _(_ . 2 _
@ f(2) = (22 — 1)*( 2)[@2(_21:1;1]22@ 1)(2z)
2(z2 — 1)[—(2® — 1) +42%]  2(32° +1)
(z2 —1)* oo (e 13

The sign of f”/(z) is determined by the denominator; that is,

f’(z) > 0if |z| > 1and f"(z) < 0if |z| < 1. Thus, fis CU on
(—o00, —1) and (1, 00), and f is CD on (-1, 1). There are no
inflection points.
72
46. f(z) = EED)E has domain (—00,2) U (2, 00).
2 2/, 2
(@) wﬂfi}wﬁﬁ :zﬁrﬁw(?—j—aﬁw = he, 1—4/301+4/m2 - 1—(1)+0 =1

2

soy =lisaHA. lim

— _ cosincex? —4and (z—2)2 -0t asz — 2T sox =2isa VA
2+ (. —2)2

z? p (z—2)%@2z) —2? 2(z—2) 2z(z—2[z—-2)—z] —4
O i) =ggp = FO=""Gopr T @-»f @2

f(z)>0if0 <z <2and f'(z) < 0ifz <0orz > 2.s0 f is increasing on (0,2) and f is decreasing on

(—00,0) and (2, 00).
(c) f(0) = 0is alocal minimum value. (e)
—2)3(—4) — (—4z) - 3(z — 2)°

_ 4(z —2)%[~(z—2)+3z] _8(z+1)

(z—-2)° (z-2)*

f'(z) > 0ifz > —1(z #2)and f’(z) < 0if x < —1. Thus, f
is CU on (—1,2) and (2,00), and f is CD on (—oo, —1). There is
an inflection point at (—1, 5 ).

41. (a) lim (Va2 +1—z) = coand

v+ 14z . 1 .
i —z) =l 2 —g) Yt eee—-—-=1 —— =0,s0y =0isaHA.
Jim, (Va2 +1-x) Jim (Vo +1-z) Tt a Ry e G y

T

® fl@)=vzi+l-z = f'(z)= \/ﬁ — 1. Since \/—;_f——ﬂ < 1forallz, f'(x) < 0,s0 f is

decreasing on R.
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(c) No minimum or maximum (e) v
—1/2
@ friay = & D21 e 3@ +1) 720
x) =
(Vam+1)°
. 2 1
@) , N
. ($2+1) _(.’E +1)_$ 0 X
= z2 + 1 (z2 + 1)3/2
= ;32 > 0,s0 fis CUonR. No IP
(x2+1) /
48. (a) lim ztanz = ocoand lir11/2+xtanat =o00,s0z=Fandx = — 7% are VA,
Tomw/27 T——T

(b) f(z) =ztanz, -3 <z < Z. f'(z) = zsec’z + tanz > 0 (e) y

< 0<z < %, so0 fincreases on (0, %) and decreases

on (—%,0). "“%§ x=3
(¢) f(0) = 0is alocal minimum value. : !
(d) f”(m):2sec2:c+2xtanmsec2w>Ofor—%<x<%,sofis 0 X

CUon (-%,%).NoIP

49. f(z) = In(1 — Inz) is defined when = > 0 (so that In z is defined) and 1 — Inz > 0 [so thatIn(1 — Inz) is

defined]. The second condition is equivalentto 1 > Inz < z < e. s0 f has domain (0, e) .

(@) Asz — 0% Inz — —00,501 — Inz — ocand f(z) — 0. Asz — e, Inz — 17,501 —Inz — 0* and

f(z) = —oo. Thus. z = 0 and = = e are vertical asymptotes. There is no horizontal asymptote.

(b) f'(z) =

1 1 1 . . . .
T2 <—E> = —m < 0on (0,e). Thus. f is decreasing on its domain, (0,e).

(c) f'(x) # 0on (0,e€), so f has no local maximum or minimum value.

—[z(1—Inz)]

_z(=1/z)+ (1 —Inx)

@ f@) = - [2(1—Ina)?

Inx
z2(1 - Inz)?

so f'(z) >0 < Inz<0

(0,1) and CD on (1, e) . There is an inflection point at (1,0) .

x

z2(1 - Inz)2

< 0<z < 1. Thus, fisCUon

50. f(z) = 7 iez has domain R.
(a) Ilir{:of(x) = zli—.ngo(li% = IILHOIQ ﬁ = 0Fi- 1.soy = lisaHA.
IElzxmf(w) = EEr_nm 7 —:er =170~ 0.soy = 0isaHA. No VA.
®) f'(z) = 1+ ‘Z:)ize;)zez et _ a :11)2 > Ofor all z. Thus. f is increasing on R.
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(c) There is no local maximum or minimum.
(1+e%)?e® —e®-2(1+e%)e”
(@ +en))”
e®(L+e®)[(14+e%)—2e"]  e°(1 —e")
(1+e2)* C (Lte)’
f'(z) >0 & 1—€e">0 & x<0,50fisCUon

@ f'(z) =

(—00, 0) and CD on (0, 00). There is an inflection point at (0, 3)

51. (a) liIﬂ'I:l e~ V/(=+1) — 1 gince -1/(z+1) — 0.0y = lisaHA. lim e~ 1/t — 0 gince

z——1

-1/(z+1) —» —oo, lim e /) — oo since —1/(z + 1) — oco.soz = —1lisa VA.

z——1"

®) fa) =D 5 fe) = | ()

= f'(z) > 0forall z except —1. so f is increasing on (—oo, —1) and (=1, 00).

] [Reciprocal Rule] = e~/ /(z +1)?

(c) No local maximum or minimum (e) Cy
(2 +1)% YD [1)(@+ 1)) — V=D [2(@ 4+ 1)) |
[(z+1)2
e Vet — e 42)] e Ve Rz +1)

(z+1)4 (x+1)4
flz) >0 & 224+1<0 < z<—2%.50fisCUon

(oo, —1) and (—1 ,—2).and CD on (—3. 00). f has an IP at

(%”2)

@ f"(z) =

52. (a) f is periodic with period 7, so we consider only - <z <3 il_% ln(tam2 T) = —00.
lim ln(ta.n2 x) = 00, and lim ln(ta,n2 m) =o00,s0x =0,z = x5 are VA.
z—(m/2)” z—(—m/2)F
2 tanz secx _ , sec’ T

() f(z) =In(tan’z) = f'(z) = >0 & tanz>0 & 0<z<3Z.s0f

is increasing on (0, 3 ) and decreasing on (-%.0).

tan?x tanx

(c) No maximum or minimum

@ F@) et =t 5 @)=y @

sinx cosx sin 2z sin? 2z

& cos2z >0 & ~§<m<§,sofisCDon(—§,O)

and (0,%).and CU on (-Z,-Z) and (§,%). IPare (£%.0).
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53. (a) 2 From the graph. we get an estimate of f(1) & 1.41 as a local

[ /r\ﬂ maximum value, and no local minimum value.

—6 ———+ 16 z4+1 , 1-z
= = )= ———"T—.
t/ | } f(il?) 2+ 1 f ( ) (CL‘Q + 1)3/2
-2 flz)y=0 & z=1 fQ1)= % = /2 is the exact value.
(b) From the graph in part (a), f increases most rapidly somewhere between z = —% andz = —i. To find the

exact value, we need to find the maximum value of f’, which we can do by finding the critical numbers of f’.

' (z) = ——*2:;21311).5721 —0 & g=3 i4\/ﬁ. z=3 +4\/l—7 corresponds to the minimum value of f.
The maximum value of f' is at (3"—4@, V- @ ) ~ (—0.28,0.69).
54. (a) 2 Tracing the graph gives us estimates of f(0) = 0 for a local minimum
value and f(2) = 0.54 for a local maximum value.
- . fl@)=2%"" = f(z)=ze*2-2). fllz)=0 &
L j z =0o0r2. f(0) =0and f(2) = 4e~2 are the exact values.

-1
(b) From the graph in part (a), f increases most rapidly around z = %. To find the exact value, we need to find the
maximum value of ', which we can do by finding the critical numbers of f. f'(z)=e"" (:n2 — 4z + 2) =0
= & =2%v2 z =2+ /2 comresponds to the minimum value of f’. The maximum value of f’ is at

(2 -2, (2- \/5)26—2""/5) ~ (0.59,0.19).

5. f(z) =cosz+ 3 cos2z = f(z)=—sinz—sin2z = f"(z) = —cosz — 2cos 2z
(a) 2 - From the graph of f. it seems that f is CD on (0,1),CUon (1,2.5),
/ CDon (2.5,3.7). CU on (3.7,5.3). and CD on (5.3,2m). The points
0 1\_/\/ 2 of inflection appear to be at (1, 0.4). (2.5, —0.6). (3.7, —0.6), and
(5.3,0.4).
R

(b)

From the graph of f” (and zooming in near the zeros). it seems that f

2
—
f /\ A is CD on (0,0.94). CU on (0.94,2.57). CD on (2.57,3.71). CU on
0

5 \/ 27 (3.71,5.35).and CD on (5.35, 27r). Refined estimates of the
inflection points are (0.94,0.44), (2.57, —0.63). (3.71,-0.63). and
. (5.35,0.44).
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5. f(z) =xz3(z —2)* =

57.

58.

59.

flz)=2 4(z —2)% + (z — 2)* - 32% = 2%(z — 2)*[dz + 3(z — 2)] = 2°(z — 2)*(Tz — 6) =

f(z) = (2z)(z — 2)%(Tz — 6) + 2% - 3(x — 2)%(Tz — 6) + 2°(z — 2)%(7)
=z(z — 2)*[2(z — 2)(7Tz — 6) + 3z(Tz — 6) + Tz(x — 2)]
= z(z — 2)%[422% — T2z + 24] = 6z(z — 2)*(T2* — 12z + 4)

(a) 5

-5

T AN
U

-10

From the graph of f. it seems that f is CD on (—oc0,0). CU on
(0,0.5), CD on (0.5, 1.3). and CU on (1.3, 00). The points of

inflection appear to be at (0,0), (0.5,0.5). and (1.3,0.6).

From the graph of f (and zooming in near the zeros). it seems that f
is CD on (—o0, 0). CU on (0,0.45). CD on (0.45,1.26). and CU on
(1.26, 00). Refined estimates of the inflection points are (0,0).

(0.45,0.53). and (1.26,0.60).

In Maple, we define f and then use the command 5

plot (diff (diff (f,x),x), x=-3.

up on (0.1, 00) and concave down on (—00, 0.1).

It appears that f” is positive (and thus
f is concave up) on (—1.8,0.3) and
(1.5, 00) and negative (so f is concave

down) on (—o0, —1.8) and (0.3,1.5).

.3) ;. In Mathematica, we ( %
define f and then use Plot [Dt [Dt [£,x], x] Ax,-3,3}1.We _SM 3

see that f > 0 forz > 0.1and f" < 0forz < 0.1. So f is concave

0.2 10
5 ]
f o 4
_10L N;; \/
-0.1 -15

Most students learn more in the third hour of studying than in the eighth hour, so K (3) — K (2) is larger than

K (8) — K(7). In other words. as you begin studying for a test, the rate

of knowledge gain is large and then starts to

taper off, so K'(t) decreases and the graph of K is concave downward.
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60. At first the depth increases slowly because the base of the mug depth of coffee

is wide. But as the mug narrows. the coffee rises more quickly. ,
. . height
Thus, the depth d increases at an increasing rate and its graph is ~ of mug

concave upward. The rate of increase of d has a maximum

where the mug is narrowest; that is, when the mug is half full. It Ip

is there that the inflection point (IP) occurs. Then the rate of

increase of d starts to decrease as the mug widens and the graph ——

becomes concave down. fill mug
61. 100 From the graph, we estimate that the most rapid increase in the

percentage of households in the United States with at least one VCR
occurs at about ¢ = 8. To maximize the first derivative, we need to

determine the values for which the second derivative is 0. We’ll use

, and substitute a = 85. b = 53, and ¢ = —0.5 later.

a
V(t) = ——
0 i R S R S .120 () 1+bez't

bee®)

V() = _ _afbee”) by the Reciprocal Rule] and

(t) (1 + bet)? [by proca |
V“(t):—abc~(1+bet) cet — e 2(1 + bet) - beet

[(1+bert)?)?
_ —abc- ce® (1 + be™)[(1 + bet) — 2be”’]  —abc’e (1 — bet)
(1 + bect)4 T (1 bect)s

SoV'(t) =0 & 1=be" o e =1/b Now graphy = e "% and Y = =5. These graphs intersect at
t & 7.94 years, which corresponds to roughly midyear 1988. [Alternatively. we could use the rootfinder on a
calculator to solve e =05t = 5—13 Or, if you have already studied logarithms. you can solve e“* = 1/b as follows:
ct=1In(1/b) < t=(1/c)In(1/b) = —2In 25 ~ 7.94 years.
62. (a) As |z — 00, t = —2%/(20%) — —c0. and e! — 0. The HA is y = 0. Since ¢ takes on its maximum value at
z = 0, s0 does e*. Showing this result using derivatives, we have f(z) = A N
fl(z) = e/ (20" (—z/0®). f'(x) =0 <« =z = 0. Because f' changes from positive to negative at z = 0,

f(0) = 1 is alocal maximum. For inflection points, we find
1

— 2 2 . —
f(z) = ) [6 =/ 4 :De_zz/(z"z)(—z/az)} = 0—216_22/(2”2)(1 - 2%/a?).
flfle)=0 & 2°=0? & z=40. ') <0 & 22<0?> & —o<z<o. So fisCDon
(=0,0) and CU on (—oo, —c) and (0,00). IP at (io, e‘1/2>.
(b) Since we have IP at = 0. the inflection points move away from the y-axis as o increases.

()

From the graph. we see that as o increases, the graph tends to .
spread out and there is more area between the curve and the

T-axis.
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63. f(z)=az® + b2’ +cx+d = f'(z)=3az® + 2bx +c. Weare y
given that f(1) = 0and f(—-2) =3.s0 f(1)=a+b+c+d=0and -2.3) 3T
f(=2) = —8a+4b—2c+d=3. Also f'(1) =3a+2b+c=0and
f'(=2) = 12a — 4b + ¢ = 0 by Fermat’s Theorem. Solving these four

. —r2 0 2 X
—4.d = Z. so the function is

equations, we geta = 2.b = 1.

Cc =
f(z) = 3(22® + 32 — 1224+ 7).

2 .
64. f(z) = aze™ = f'(z)= a[:cel””2 - 2bz + €' - 1} = ae*’ (2bz® + 1). For f(2) = 1 to be a maximum
value, we must have f'(2) =0. f(2) =1 = 1=2ae"and f'(2)=0 = 0=(8+ 1)ae. So

8+1=0[a#0] = b:—%andnow1:2ae’1/2 = a=+e/2

65. Suppose that f is differentiable on an interval I and f'(x) > 0forall z in I except z = c. To show that f is

increasing on I. let z1, z2 be two numbers in I with z1 < 2.

Case] 1 < 2 < c. Let J be the interval {z € I | = < c}. By applying the Increasing/Decreasing Test
to f on J. we see that f is increasing on J, so f(z1) < f(z2).
Case2 ¢ < z1 < x2. Apply the Increasing/Decreasing Test to f on K = {zel|z>c}

Case 3 1 < T2 = c. Apply the proof of the Increasing/Decreasing Test. using the Mean Value Theorem
(MVT) on the interval [z1, z2] and noting that the MVT does not require f to be differentiable at

the endpoints of [z1, z2].
Case4 c =z, < 2. Same proof as in Case 3.

Case S 1 < ¢ < xo. By Cases 3 and 4, f is increasing on [z1,c] and on [e, z2], s0 f(z1) < f(e) < f(z2).

In all cases. we have shown that f(x1) < f(2). Since x1. x2 were any numbers in I with £; < z2. we have shown
that f is increasing on I.

66. (a) We will make use of the converse of the Concavity Test (along with the stated assumptions); that is, if f
is concave upward on I, then f” > 0 on I. If f and g are CU on I. then f”>0andg” >0o0nl,
so(f+g)" =f"+g">00onl = f4+gisCUonl.

(b)Sin«::efispositiveandCUonI.f>0amdf">00nI.Sog(:::):[f(ar:)]2 = ¢ =2ff =
g =2f f +2ff" =2(f) +2ff'>0 = gisCUonl.

67. (a) Since f and g are positive. increasing, and CU on [ with f and g’ never equal to 0, we have f > 0.
>0, f">0.9>0.g >0.g">00nI Then(fg) =fg+fg =
(fg)' = f'g+2fg +fg" > "9+ fg">0onl = fgisCUon I.

(b) In part (a), if f and g are both decreasing instead of increasing, then f' <0andg < 0Oonl, sowe still have
2f'g" > 0on . Thus, (fg)" = f'g+2fg +fg" > f'9+fg" >0onl = fgisCUon I as in part (a).
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(c) Suppose f is increasing and g is decreasing [with f and g positive and CU]. Then f’ > 0and ¢’ < 0on J.
$02f'g" < 0on I and the argument in parts (a) and (b) fails.

Example 1. [ = (0,c0), f(z) = 2°, 9(z) = 1/z. Then (fg)(z) = 22. so (f9)'(z) = 2z and
(f9)"(z) =2 > 0on I. Thus. fgisCUon I.

Example2. [ =(0,00). f(z) = 4z /7, 9(z) = 1/z. Then (fg)(z) = 4 /7. so (f9)'(z) = 2/\/z and
(f9)"(z) = =1/Va® < 0on I. Thus. fgis CD on I.

Example 3. = (0,00). f(z) = 22 9(z) = 1/z. Thus. (fg)(z) = z. so fg is linear on I.

68. Since f and g are CU on (=00,00). f > 0and ¢” > 0 on (=00, 00).
h(z) = f(9(z)) = W(z)=f'(9(x))g'(z) =

W'(@) = 1" (9(2))g' (2)9'(z) + f'(9(x))g" () = F(9@)g' @) + ' (9(x))g" (z) > 0if ' > 0.
Sohis CUIf f is increasing.

69. f(z) =tanz —2 = f’(x):seczm—1>0for0<3:<%sincesec2z>1for0<z< 250 fis
increasing on (0, ). Thus. f(z) > fO)=0for0<z<T = tanz—z>0 = tanz > z for
0<z<i.

70. (a) Let f(z) = e® — 1 — 2. Now f(0) =€® —1=0.and for z 2 0.we have f'(z) = e — 1 > 0. Now. since

f(0) = 0 and f is increasing on [0.00). f(z) >0forz >0 = e _1 —z20 = e >1+z.
®)Let f(z) =e* -1 — g — 12*. Thus. f'(x) =e® -1 — z, which is positive for z > 0 by part (a). Thus. f(z)
is increasing on (0, 00). 50 on that interval. ) — FO)<flz)=e"-1—-2— 320 = e >14z4 322

2 k
(¢) By part (a), the result holds forn = 1. Suppose that e* > 1 4 ¢ + % + -4 z forz > 0.

k!
2 k k+1 k

=e® I _ .o = 2)=e®—1—g—..._ 2%
Let f(z) = e _I—I—E— o (k+1)!.Thenf(a:)—e 1-z k!EO
by assumption. Hence, f(z) is increasing on (0.00). S0 0 < 2 implies that

. z* ! . z* R+l
0=f(0)§f(.’l))=€ —1—z—-~-—ﬁ—m.andhen0ee 21+x++y+mfor
2 n

x 2> 0. Therefore, for z > 0, ¢® >1l+z+ % + -+ % for every positive integer n. by mathematical

induction.

1. Let the cubic function be f@)=ar® + b2’ 4 cx+qd = (@) =3az® + 20z + ¢ = f"(z) = 6az + 2b.
So fis CUwhen 6az + 2 > 0 < z > —b/(3a). CD when z < —b/(3a). and so the only point of inflection
occurs when x = —b/(3a). If the graph has three z-intercepts ;. x5 and 3. then the expression for f(z) must
factor as f(z) = a(z — T1)(z — 22)(z — z3). Multiplying these factors together gives us

f(z) =a[z® - (2, + 25 + z3)2? + (2123 + 2125 + Toxs)x — T122x3]. Equating the coefficients of the

@?-terms for the two forms of f gives us b = —a(zy + z2 + z3). Hence. the z-coordinate of the point of inflection
is b —a(zi + x4+ T3) x4 20 + 3
== 9/ —_—.
3a 3a 3
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72. P(z)=a'+cz® +2° = Plz)= 42® 4 3cx® + 2z = P'(x) = 12a® + 6cz + 2. The graph of P"(2)

73.

74.

5.

is a parabola. If P"(z) has two roots. then it changes sign twice and so has two inflection points. This happens

when the discriminant of P”(z) is positive, that is, (6c)>—4-12-2>0 & 36c> -96>0 &
e} > 3%@ ~1.63.1f36c>-96=0 & c= :I:Q%E. P"(z) is 0 at one point, but there is still no inflection point

since P"(z) never changes sign. and if 362 —96<0 & | < 2—?3@, then P" (z) never changes sign. and so

there is no inflection point.

100 20 0.5
GSR/ ﬂ .
-3 2
L \/ J -1.25 05
-125 -5 ' 0 ’
c=26 c=3 Cc = 1.8
05 3 0.5
()J >~ /\ 15
1M 0.5 -15 ; J | . )
0 0 -0.1
c= 216 c=0 c=—2

|

For large positive ¢, the graph of f has two inflection points and a large dip to the left of the y-axis. As c decreases.
the graph of f becomes flatter for < 0, and eventually the dip rises above the z-axis. and then disappears entirely.
along with the inflection points. As ¢ continues to decrease, the dip and the inflection points reappear. to the right of

the origin.

By hypothesis g = f' is differentiable on an open interval containing c. Since (¢, f (c)) is a point of inflection, the
concavity changes at £ = ¢, SO f"(x) changes signs atz = C. Hence, by the First Derivative Test, f' has a local

extremum at z = c. Thus, by Fermat’s Theorem f'(e) =0.

flz)=2* = f(z)= 4r* = f(z)=120" = £(0) = 0. Forz <0, f"(z) > 0.s0 f isCUon
(—00,0); forz > 0, f"(z) > 0,50 f isalso CUon (0, 00). Since f does not change concavity at 0, (0,0) is not an

inflection point.

Using the fact that |z| = /22, we have that g(z) = zVz2 = ¢ (x)=vz>+ V2 =2V =2lz| =

-2 _ %_m_‘ < Oforz < 0andg”(z) >0forz > 0, so (0, 0) is an inflection point. But g”(0)

g"(z) = 2x(z?) o

does not exist.
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76. There must exist some interval containing ¢ on which "’ is positive. since f"(¢) is positive and f"” is continuous.
On this interval. f” is increasing (since f""is positive). so f = (f') changes from negative to positive at c. So by
the First Derivative Test. £’ has a local minimum at x = ¢ and thus cannot change sign there, so f has no maximum

or minimum at c. But since f" changes from negative to positive at c. f has a point of inflection at c (it changes

from concave down to concave up).

4.4 Indeterminate Forms and L'Hospital’s Rule

The use of I'Hospital's Rule is indicated by an H above the equal sign: oy

1. (a) lim %x)) is an indeterminate form of type g
x

T—a g

(b) lim % = 0 because the numerator approaches 0 while the denominator becomes large.
r—a

. h(z . . .
(c¢) lim I%w)) = 0 because the numerator approaches a finite number while the denominator becomes large.
r—a

(d) Ifigl}lp(w) = ooand f(z) — 0 through positive values. then lim p(z) = 00. [For example, take a = 0,

==a f(z)

p(z) =1/22 and f@) =2 11f f(z) — 0 through negative values, then lim p(z)

2 (@) = —o0. [For example,
take a = 0, p(z) = 1/22, and flz) = -] 1f f(z) — 0 through both positive and negative values, then the

limit might not exist. [For example, take a = 0, p(z) = 1/z* and f(z) = z.]

T—a

(e) lim M is an indeterminate form of type E.
q(z) 00

2. (a) zhrr; [f(2)p(z)] is an indeterminate form of type 0 - 0o.

(b) When z is near a. p(z) is large and k(z) is near 1. so h(x)p(x) is large. Thus, lim [h(z)p(x)] = oo.

(c) When z is near a, p(z) and g(x) are both large, so p(z)q(z) is large. Thus, lim [p(z)g(z)] = co.

3. (a) When z is near q. f(x) is near 0 and p(z) is large, so flz) —
lim [f(z) — p(z)] = —o0.

T—a

p(z) is large negative. Thus.

(b) Ih_r’r’ll [p(z) - q(z)] is an indeterminate form of type oo — oo,

(c) When z is near a. p(z) and g(z) are both large. so p(z) + g(z) is large. Thus, lim [p(z) + q(z)] = oo.
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4. (a) il_rg [f(=))? (@) is an indeterminate form of type 0°.

(b) Ify = [f(m)]p(z), then Iny = p(z) In f(z). When z is near a. p(z) — oo and In f(z) — —00, 50

Iny — —oo. Therefore, ;l_r'r}1 [f(m)]p(z) = lim y = lim e™¥ = 0, provided fP is defined.

Tr—a Tr—a

(c) lim [h(cc)]p(x) is an indeterminate form of type 1°°.

T—a

(d) lim [p(m)]f(z) is an indeterminate form of type 00".

r—a

(e) Ify= [p(x)]q(x). then Iny = ¢(z) Inp(z). When z is near a. q(z) — oo and Inp(z) — 0. 50 Iny — oo.

Therefore, lim [p(w)]q““‘) = lim y = lim ™Y = oo.
z—a r—a r—a

(f) il_l’g a1 /p(x) = lin}l [p(ac)]l/Q(z) is an indeterminate form of type oo®.

5. This limit has the form %. We can simply factor the numerator to evaluate this limit.

2
oozt =1 (D1 .
= 1 - = — = —
. T +2 . z+2 1
6. lim ————— = 1 =1 =-1
Jim S T e @+ (2 + 2) P Yy |
9 8
o o2 —1lw . 9% 9, 9 9
7. This limit has the form 3. il—.ml 1:5—1:};13]55}1:3;1?1:84:5(]):5

oz —1w, a ' _a
8. lim — =lim ——— =7
alizb — 1 «—1 bab~! b

CcOST H . —sinz

9. This limit has the form 3. lim ~ =  lim lim tanz = —oo.
esinj2)yt L —SINT  a—(m/2)t —COST 2 (m/2)F

r+tanz H . 1 +sec’x 1412
T S lim— =" =

10. lim - = 2
z—0 sinx z—0 COST 1
s 0 1 et —1Hu, et . " 2 i
11. This limit has the form §. lim Him & = cosince et — 1and 3" — 0t ast— 0.
0" ¢S50 3 t—0 3t2
3t 3t
-1

12. lim B jim 36 3

t—0 t t—0

2 2
t . T 1
13. This limit has the form %. lim tanpt 8 fim psec P _ o )2 iy
Db tangr  «—0 gsec? gz q(1) q
14. 91_13(1/ ) 1—5%1—9 = % = 0. L Hospital’s Rule does not apply.
1 1
15. This limit has the form €. lim BT H iy _/_a: =0
z—oo T T— 00
x x

16, lm & 2 lim & = lim e =00

z—o0 T T—00 1 T— 00
17. lim [(Inz)/z] = —oo since Inz — —ooas x — 0 and dividing by small values of z just increases the

z—0

magnitude of the quotient (Inz)/z. L'Hospital’s Rule does not apply.

1 1
e 1

18 lim DB H gy InZ T = fim =

T — 00 T x— 00 z—oo TINT
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.5 —3" 4 . 5'In5-3"In3
- This limit has the form §. lim £ lim - =In5-In3=In?
. Ilnz wu 1/ 11
. lim — = lim = = ——
e=lsinTe  e—lmwcosmz  w(—1) v
0 ef—1l-zwn e’”—li, izl
. This limit has the form 5 il_r% — = = lim 72 alﬂ]_tg > 3
I e“—l—w—w2/2ﬂl. e’”~l—mﬂhmex—lﬂh i:l
i zl—r>r(l) {1:3 - II—I)I%) 3:1;2 - z—0 6:13 o x—0 6 6
. . . . x H . T e:l) eI
. This limit has the form 2. lim — = lim — = lim — = lim — = oo
sinz u lim cosxT 1 -1
"e-0sinhz  z—0coshz 1
1
sin""zy . 1/y/1-—2z2 . 1 1
= = =1 =-—-=1
. This limit has the form 2 0 hm0 - il—»o 1 211)1(1) T 1
i smz~:cHl Cos:c—lﬂli —s1nxﬂlm—cosz _1
: .'tll»% x3 a:—»O 32 - z—0 €T - z—0 6 - 6
i 1
. This limit has the form 9. lim ~— 2% H 1, SN2 4 cosz 1
0" 250 2 =00 T z—0 2 2
2 1 1
i 201 2ne)A/2) e, lim /% =2(0) =0
T—00 T T—00 r—o0 I T—00

T +sing O—|—0 0

. ilir(l) Ticosz - 0%l 11 0. L'Hospital’s Rule does not apply.
;) COSMET — COSNT W ..  —msinmz+nsinnz v .. —m?cosmz +n? cosnz 1/ 2 2
L lim —————— = lim = lim = 5(n* —m?)
z—0 xT z—0 2T z—0 2
x xT
- This limit has the form &2 lim —— 2 My 1 142" p 26
z—oo In(1 + 2e%)  z—o 1 Qer T 2e® z—o00 2€%
14 2e*
lim ——~ X lim ! = lim 1+ 1627 _1
"eo—0tan~!(4z) 20 1 4 Te—0 4 4
1+ (4z)2
— —_ _— 2 —_—
. This limit has the form 5- lim l-ztlas 2 Jim M 2 lim & S = L
e=1 l1+cosmz  z>1 —wsinwz a—1 —72 cosnz —-m2(-1) 2
i VB2 \/z +2 \/1' 2 +2 o L+2/e’
z—00 /2 +1 T—00 21;2 +1 Z—00 2:1:2 + 1 :z:-—»oo 2 + l/wz
.Thislimithastheformg. lim Z —ax_'—a_lﬂhrn —agl a(a = D2*” = ala=1)
z—1 (x—1)2 z—1 2(w -1 it 2 2
l—e™2® 11
Clim —— ==~ — . ital®
lim soca 7 0. L'Hospital's Rule does not apply.

. This limit has the form 0 - (—00). We need to write this product as a quotient, but keep in mind that we will have to

. . . . . 1 .
differentiate both the numerator and the denominator. If we differentiate e We get a complicated expression that
nx

results in a more difficult limit. Instead we write the quotient as

n
-1/2"

Inz u 1/z —22%/2
hm Inz= lim —— = . -
Vzlna = z_lf(?'FiE 1/2 zl—l»0+ _Ex_g/g —0.3/2 Il_l.r(fll( 2z) =
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38.

39.

40.

Q.

42.

43.

45,

46.

47.

48.

49,
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2

. 2 . N 2z . 2 .

lim z°e® = lim — = lim = lim — = lim 2" =0
T——00 z——00 € z——o00 —e~ % z——oc0 7% T——00

This limit has the form oo - 0. We'll change it to the form 3.

0
lim cot 2z sin 6z = lim sin 6z 2 im 6 cos 6z = 6(1) =
50 =0 tan 2z =—0 2sec?2x  2(1)2
lim sinzlnz = lim Inz 1 im —1/$—— = — lim i -tanx
z—0t z—0+ CSCT  z—0t —cCscxcot z—0+ x
= —( lim sma:) ( lim tanm) =-1-0=0
z—0t+ T z—0+
3 2
This limit has the form oo - 0. lim 2 = lim $—2 2 lim 3z > = lim L lim
z—00 z—o00 T z—o00 2re® z—o00 2T z—o0 4xe®
l'1m/4(1 —tanz)secx = (1 — 1)+/2 = 0. L'Hospital’s Rule does not apply.
Tr—T
This limit has the form 0 - (—00).
. . Inx H . 1/x 1 2
lim Inxzt 2)=1 — =1 = __2
Jim Inz tan(re/2) = lim, 22rmey = I o oy ese2(rz/2)  (—n/2)(1)?
. . tan(1 . sec’(1/z)(—1/? .
i etan(e) = i S0LE) 2 i EECIEUED < i sec(1/a) =12 =1
. 1 . 1 1 . sinz—=z
lim(=—cscx ) = lim|{ — — — = lim ——
z—0\ T z—0\z sinz z—0 Isinz
cosx — 1 H . —sinx 0
= lim ————— = lim - =—-=0
20 £ COST +sinz  =—02cosx —rsinz 2
. . 1 cosT . l—cosz u , sinzT
lim(cscz — cotz) = lim | —— — = = lim ——— = lim =0
z—0 z—0\sinx sinz z—0 sinx z—0 COS T

We will multiply and divide by the conjugate of the expression to change the form of the expression.

Ve2+z -z \/:r2+a:+m) ) (x2+m)—z2

; 2 _ — 1 . =1

Jim (Va? 2 —2) )Lf&( 7 ) A F Tt
1 1

T 1
lim ———— = lim = =
emoo @R ta+x  wmeI+1ljz+1  VI+1 2
As an alternate solution, write vz2 + z — z as Va2 + T — v/x2, factor out /2, rewrite as
(v/T+1/z — 1)/(1/x). and apply I'Hospital’s Rule.

. 1 1 1 I_l_lnwﬂim 1-1/z oz
abi\lnz -1 = (z—1)nz =1 (z—1)(1/z)+Inz 2
z—1 H 1 1 1

=1 LT _ _1
lm s e l+1l+lnz 2+0 2

The limit has the form oo — oo and we will change the form to a product by factoring out x.

1 . 1 . 1z
lim (z — Inz) = lim z(l - ﬂ) = ocosince lim — £ lim Yz =0.
T—00 z—00 X z—oo I z—oo 1
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80. Asz — 00.1/z — 0.and '/ — 1. So the limit has the form co — 0o and we will change the form to a product
by factoring out z.

1/z _ el/x -1 (172
lim (:cel/“” —x) = lim as(el/z - 1) = lim & 1 L lim ( / ) = lim e'/* =¢’ =1
z? 2
Sl.y==x = Iny=2z"Inz. so
. . 2 . Inz u 1/z . 1,
lim Iny = lim z°lnz = lim = lim =lm (--z*) =0 =
z—0+ =0+ e—ot 1/22 oo+ —2/23 T Lo+ 2
lim 2°° = lim ™Y = ¢® = 1.
r—0+ z—0+
52. y = (tan2z)® = Iny = z-Intan2z. so
Intan 2
lim Iny = lim z-Intan2z = lim ——n<®
z—0t z—0+ z—0t 1/1‘
1 2sec? —2z7 cos 2
Ao (1/ tan 2z)(2sec QI):lim —2o7cos2s . lim 1020 =
z—0+ —1/z? z—0+ Sin2xcos? 2z z-0+ sin2z oo+ cos2z
lim (tan2z)® = lim ™Y =¢® = 1.
z—0+ z—0+
1 In(1-2 — -
8.y=(1-22)"/" = Iy=- In(1 — 2z), so lim Iny = lim n( z) L lim 2/(1 - 22) =-2 =
T z—0 z—0 T z—0 1
lim (1 — 22)Y/% = lim ¥ = ¢~2.
z—0 z—0
a\ b=z a
5.y = (l+—) = lny:b:cln(l—{——),so
z z
b 1 a
. . bln(l14+a/z) u | 1+a/z (_x'-’) ab
lim Iny = lim ———~/ 4 = li =
bz
lim (1 + 2) = lim eV = 2,
T—00 T r—00
3 5\"
55.y=<1+—+—5) = lny=mln<1+§+—5—> =
T =z xz x?
3 5
In(1+ =+ = A YA 34 10
. . z x*) u z2 g3 z oz
lim Iny = lim 1 = lim 1723 =1 3935 =3,
T—0o0 T—00 T T—00 — —
/.’L‘ T—00 142 + =
x
so lim (1 + § + %) = lim ™Y = ¢3,
T—00 x x x—00
— p(n2)/(1+Inz) _ In2
56. y ==z = Ilny= Inz =
+Inz
. . In 2)(1
lim Iny = lim M 2 Jim w = lim In2 =1n2,
so lim I(ln?)/(l-}—lnz) = lim elny — ean =9
5.y=2z2'" = Iny=(1/z)Inz = lim Iny= lim nz L lim ilm =0 =
T—00 r—oco I r— 00

lim z'/% = lim ¥ — e =1

T—oo T—00
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z 1
5.y = (¢* +2)"/* = Ilny= p In(e® + z). so

. . In(e®+x)n . e€+1wu . e u . €
lim Iny = lim —— = lim = lim im
T—00 z—00 T z—o0 €T + T z—oo % + 1 z—o0 €T

lim (e” + )" = lim "V =¢' =e.

T — 00 T— 00

T * x
59. y = =
y <m+1> = Ilny wln<x+1>

)_ lim Inz —In(z + 1) H

Yz —1/(x+1)

x
lim Iny = 1i 1
Jim g = lim otn( 5

:L'2 —T
= lim |-z + = lim =-1
z—00 r+1 z—oo T+ 1

x
. x . _
so lim ( ) = lim e®¥ =¢7!

T -1
Or: lim< z > = lim {(m—l—l) }
z—oo \ 4+ 1 T—00 T

60. y = (cos 3z)/* = Iny= g In(cos3z) = limlny=5 lin%)

T—

x

1 z7—1
{lim (1+—) ] =e!
T—00 x

In(cos3z) n m —3tan3z
T = 1

50 lim (cos 3z)%/® = €® = 1.
z—0

61.y=(cosw)1/“c2 = lnyzélncosa: =

lim Iny = lim Incosz u lim —tanz A lim iec—chz—l =
z—0t vy= z—0t x - z—0Tt 2r z—0t 2 2
lim (cosac)l/“”2 = lim "V =e 2 =1/\/e
z—0t z—0
2z — 3\ ! 2z — 3
Ly = lny=2z+1)1
62. y <2$+5> = Iny=(2z+1)In 525
. . In(2z—3)—In(2z+5 n , 2/(2z—3)— 2/(2x+5) .. —8(2x + 1)?
= = =1 _
Jim Iny = lim 2z 1 1) S (2 + 1) o (22 —3)(2z 1 5)
, —8(2+1/x)? . (2z— 3)2’“ s
a:an;o (2-3/z)(2+5/z) 8 oo\ 22+ 5 €

From the graph. it appears that lim z [In(z +5) —In z] = 5.

To prove this, we first note that

1n(ac+5)—1nm:ln$:5 :ln<1+2> — 1In1=0asz — oo. Thus,

1 1
. . In(@+5)—lnzu Z+5 =
Jim o ln(e+5) ~Inz] = lim == SR Ty

S H :1:—(:8+5).——:E2 _hm_S_Ji__
= oo z(z + 5) 1 | s—ooz?2+5x

200

xT— 00
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64. 038 From the graph. it appears that Iim/ (tanz)**"2* x .368.

rz—o7/4
The limit has the form 1°°. Now y = (tanz)®*"?* =

Iny = tan 2z In(tanz). so

lim 1 . In(tanz) u lim sec? z/ tan x 2/1 .
o T = ] —s = = = —
I_0'2()'36 7 +02 z—1v21/4 ny I—1>17\I'/4 cot 2x z—m/4 —2csc? 2z —2(1)

= lim (tanz)™ % = |im e"¥ =e¢ ! = 1/e = 0.3679.

T—7/4 z—7/4

From the graph. it appears that

/
lim @) = lim @ = 0.25. We calculate
20 g(z) ~ #b g'(a)
f(z) . e"—=1 y e’ 1

1 — = =1 = .
alcl-g}) g(z) ilg%) 2 +dz 250 372 +4 4

f(z)

: : (=)
From the graph, it appears that lim “=-2 = lim =4.
Srph-ttapp b gz) =m0 ¢'(a)

We calculate

Q] 2 2
lim f(z) - lim 2zsinx A lim (zcosz + sinx)
z—0 g(z z—0secr —1 =z—0 secz tanz
H . 2(—zsinz + cosz + cos z) 4
= lim ==-=4
=0 secz(sec? z) + tanz(secz tanz) 1
= lim — = o0
T—00 T
68. lim 8 Ay, LT L sincep >0,
z—o0 P T—00 p;z)p_l T—00 p(L‘p
i nt i nt i
69. First we will find lim (1 + —) - Which is of the form 1*°. y = <1 + —) = lny=nt ln(l + —) . S0
n—oo n n n
. ‘ - In(1+i/n) w . . (=i/n?) A i .
lim Iny = 1 thn(1+—) =t lim —— /7 B,y =11 =
e, “( + n) Wl 1/n noo (LF i/m)(—1/n2) — L, T = 1

n—oo

-\ nt
= lim y=eit.Thus.asn—>oo.A=A0<1+£> — Age'.
n

70. (a) tlim v = lim ﬂ(1 — e_"t/m) = lim (1 - e“'t/m)
—00

t—oo ¢ C t—oo
n
= 779(1 —0) [because —ct/m — —oo as t — o] = E.
c

which is the speed the object approaches as time goes on. the so-called limiting velocity.

_ ,—ct/m __p,—ct/m t 2
® lim v= lm Z9(1—ctm) =9y Lze T ng - —e 7 (et/m?)
m—oo m—oo ¢ ¢ m—oo 1/m ¢ m—oo —1/m?2

= %(ct) ‘n}im e™™ = gt(1)  [because —ct/m —0asm — oco] = gt.

The speed of a very heavy falling object is approximately proportional to the elapsed time ¢. provided it can fall
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for time ¢ in an environment where the given model continues to hold. [If ¢ is too large. the object may hit the

ground in less than time ¢. or it may have to start falling too high above the earth. where there is almost no air.].

71. We see that both numerator and denominator approach 0. so we can use 1'Hospital’s Rule:

lim V2a3z — 2% — a Yaazx B %(Qa% z*)” l/2( m3) a(3)( aax)_2/3 a®
r—a a — ‘4/0,1'3 r—a (am3) 4(30,332)
2

1 (20% - a*) V/?(20° — 40%) — 3a®(a%a) *°

—i—(aa3)—3/4(3aa2)

_ (a )_1/2( ) ( )—2/3 _ —a—%a 16
a’(a

)3/4 = _% :%(éa):?a

| wlr—-

72. Let the radius of the circle be r. We see that A(6) is the area of the whole figure (a sector of the circle with
radius 1). minus the area of AOPR. But the area of the sector of the circle is %1‘20 (see Reference Page 1).
and the area of the triangle is 37 |PQ| = sr(rsinf) = 1r?sinf. So we have

A(B) = Lr?0 — %rz sinf =

5 r2(@ — sin@). Now by elementary trigonometry,

1
2

= 1IQR||PQ| = 5(r — |0Q]) [PQ| = 1(r —rcosf)(rsin) = 1r%(1 — cos8) sin 6.

So the limit we want is

A(9) . %7‘2(9 —sind) u . 1 —cosf
lim = lim — = lim - -
om0t B(0)  o—0+ 2r2(1 —cosf)sinf  e—o+ (1 — cos ) cos 0 + sin 6 (sin 6)

i 1 —cosf H lim sin 0
= o 050 — cos20 + sin2@  e—o+ —sinf —2cosf (—sin 6) 4 2sin 6 (cos §)

sin @ . 1 _ 1 1

i =1 = =
ol—l>r(r)1+ —sinf + 4sin6 cosé 9—l>r(l)l+ —1+4cosf —14+4cos0 3

. . . . 0
73. Since f(2) = 0. the given limit has the form 3.

fim f2+32) + f(2+52) w .o f'(2+43z) -3+ f(2+5z)-5

= f/(2)-3+f,(2)-5 = 8f,(2) =8.7=56
z—0 x z—0 1

_Asz — 0,322 — 0.and
r—0 ;1;3 z—0 312

. s1n2a: b . sin2z +az® +bx u .. 2cos 2z + 3ax® +b
74. L = lim +a + = lim = lim

(2cos 2z + 3az® +b) — b+ 2. s0 the last limit exists only if b+ 2 = 0. that is, b = —2. Thus,

im 2c0s 22 + 3aa” — 2 2 im —4sin 2z + Gaz 2 Jim —8cos2z + 6a = 6a6— 8. which is equal to 0 if and

z—0 32 z—0 6x z—0 6

only if a = %. Hence. L = Oifandonly if b= —2and a = %.
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15. Since lim[f(z + h) — f(z — k)] = f(z) — f(z) = 0 (f is differentiable and hence continuous) and ’lin%) 2h =0,
h—0 -

we use 1"Hospital's Rule:

f@th) —f@-h) n . f@+h)Q) - f(z-h)(-1) @+ (= 2f(x)
1513%( )Qh(x ):flfir% . 2 . 2 =5 =1l

fz+h)— f@—h)
2h

between (z — h, f(z — h)) and (z + h, f(z + h)). As |

is the slope of the secant line Y

h — 0, this line gets closer to the tangent line and its slope

approaches f'(z). O  v=h x x4h x
76. Since }lLin}) [f(z+h) = 2f(z)+ f(z - h)] = f(z) - 2f(z) + f(z) = 0 (f is differentiable and hence
continuous) and ’iin}) h* = 0. we can apply I'Hospital’s Rule:

f(w+h)—2f(fv)+f(fv—h)_ . f’(1‘+h)~f'(iv—h)_ 1
Jim % = lim o = f"()

At the last step, we have applied the result of Exercise 75 to f(=).

71. (a) We show that hm M = 0 for every integer n > 0. Lety = i Then
z?

—1/1: n n—1 |
lim f(T)zim—e = = lim £ 2, MY e Ny =
z—0 2" =0 (z2) y—oo e¥  y—ooo eV y—oo ey
tim L8 iy o L) e S0 Thus, £/(0) = lim L&=SO) _ fl@) _

z—0 " z—0 :1',‘2" z—0 z—0 .’122 z—0 x—0

(b) Using the Chain Rule and the Quotient Rule we see that ™ () exists for z # 0. In fact, we prove by induction
that for each n > 0, there is a polynomial p,, and a non- negative integer k, with f(™)(z) = pn(z) f(x)/z* for
 # 0. This is true for n = 0; suppose it is true for the nth derivative. Then f'(z) = f(x )(2/:1:3). SO

@)= [ B (@) £ @) + Pa(@)f @)] — knt® " pa(a) f(@)]a=*
= [P0 +a(@) (15) — a pu ()] (20

= [ 0], (2) + 2pn(a) - kna" 2 o ()| ()2 ot

which has the desired form.

Now we show by induction that (™) (0) = 0 for all n. By part (a), f’ (0) = 0. Suppose that (™ (0) = 0.

Then
FO0) = iy L@ SO0 0w @ pa@e)
-0 z—0 g b z_.o zhn+1
= Jimy on(e) iy K5 = 5,(0)-0 =0



310 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

78. (a) For f to be continuous. we need 0151210 f(z) = f(0) = 1. We note that for z # 0. In f(z) = In |z|* = zln|z|.

1
n|z| H o 1/z
T z—0 —1/$2

So lim In f(z) = lim zIn |z| = lim = 0. Therefore.
z—0 z—0 z—0

lim f(z) = lim ™/ = €% = 1. So f is continuous at 0.

z—0 z—0

(b) From the graphs. it appears that f is differentiable at 0.
2 1.1 1.01

-1 1 —0.05 0. —0.01
0 0.9 03 0 0.99 0.1

!
(c) To find f'. we use logarithmic differentiation: In f(z) = zIn lz| = ];((a:)) = m<l> +Injz| =
z z
f'(z) = f(x)(1 +1In|z|) = |2|"(1 +In|z|). x # 0. Now f'(z) — —oo as x — 0 [since |z|* — 1 and
(1 + In]z|) — —ool. so the curve has a vertical tangent at (0,1) and is therefore not differentiable there. The
fact cannot be seen in the graphs in part (b) because In || — —oo very slowly as z — 0.

45 Summary of Curve Sketching

1.y=f(z) =2® +z=x(z>+1) A. fisapolynomial.so D=R. H. y
B. z-intercept = 0. y-intercept = f(0) =0 C. f(=z)=—f(x).50 f

is odd: the curve is symmetric about the origin. D. f is a polynomial, so

there is no asymptote. E. f'(z) = 322 +1 > 0.so f is increasing on I 1 x

(—00,00). F. Thereisno critical number and hence, no local maximum

or minimum value. G. f”(z) = 6z > 0on (0,00) and f'(z) <0on {
(=00, 0). s0 fis CU on (0, 00) and CD on (—00,0). Since the concavity
changes at z = 0. there is an inflection point at (0,0).

2.y = f(z) =2°+ 62+ 9z = z(z + 3)2 A. D=R B. z-intercepts  H. yu
(—3.0)

are —3 and 0. y-intercept = 0 C. No symmetry D. No asymptote

E f(z)=3+122+9=3(@+1)(z+3) <0 & —3<z< -1,
so f is decreasing on (—3, —1) and increasing on (—o0, —3) and (-1, 00).
F. Local maximum value f(—3) = 0. local minimum value

f(-1)=—4 G. f'(&)=6z+12=6(+2)>0 & z>-2

50 f is CU on (—2, 00) and CD on (—oo, —2). 1P at (-2, —2)



SECTION 4.5 SUMMARY OF CURVE SKETCHING O
3y=flx)=2-152+92° —2® = —(z — 2)(z? - Tz + 1) A.D=R B. y-intercept: f(0) = 2;
z-intercepts: f(x) =0 =z = 2 or (by the quadratic formula) z = %@ ~ 0.15,6.85

C. Nosymmetry D. No asymptote H. Y (5,27)

E. f'(z) = —15+ 18z — 3z = —3(z* — 6z +5)
=-3z-1)(z-5)>0 & l<z<5 3.11)

so f is increasing on (1,5) and decreasing on (—oo, 1) and (5,00).

F. Local maximum value f(5) = 27, local minimum value f()y=-5 (1,=5)

N,/ \ x
G f'(z)=18—6z=—6(x—-3)>0 < T < 3.50 fisCUon
(—00,3) and CD on (3, 00). IP at (3,11)

Ly =f(z) =822 -z = z*(8 - z’) A.D=R B. y-intercept: f(0) = 0: z-intercepts: f(z) =0 =
=0 422 (~ +2.83) C. f(=z) = f(x), so f is even and symmetric about the y-axis. D. No asymptote
E. fi(z) =16z — 42° = 42(4 - 2°) =422+ 2)(2-2) >0 « H. (216 7 (2.16)

T < ~=20r0 <z <250 fisincreasing on (—oo. —2) and (0,2) and
decreasing on (—2,0) and (2,00). F. Local maximum value (‘% 3)
f(£2) = 16, local minimum value f(0) = 0

G f'(z)=16-122" =4(4-32?) =0 & z=+42

V3’ V3

CD on (—oo, —\—%—) and (\/igoo) IP at (:I:%7 %)

’ ¥
flz) >0 < —% <z<%.sofisCUon(—l i)and l

sy = f(z) =2 + 42° = z*(zr+4) A.D=R B. y-intercept: H. y
f(0) = 0; z-intercepts: f(z) =0 & z= —4,0 C. No symmetry
D. No asymptote E. f'(z) = 423 + 1222 = 42*(z +3)>0 «

z > —3.50 fis increasing on (—3, 00) and decreasing on (—oco, —3).

E. Local minimum value f(—3) = —27, no local maximum

_2._
G. f"(z) = 1222 + 24z = 12z(z4+2) <0 & —-2<z<0. ( '
so f is CD on (-2, 0) and CU on (—oo0, —2) and (0, 00). (=3.-27)

IP at (0,0) and (-2, —16)

-y =f(z)=x(x+2)° A. D=R B. y-intercept: f(0) = 0;

z-intercepts: f(z) =0 < xz=-2.0 C. No symmetry D. No asymptote

n

E. f'(z) =3z(z +2)* + (z + 2)® = (x4 2)° Bz + (z +2)] = (z + 2)%(4z + 2). fllz) >0 & z> -1

and f'(z) <0 & z<-20r-2<z< —3. 50 f is increasing on (=3, 00) and decreasing on (—oco, —-2)



312 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

and (—2, —1). [Hence f is decreasing on (—oo, —1) by the analogue of Exercise 4.3.65 for decreasing functions.]

F. Local minimum value f(—3) = —2¢, no local maximum H. y

G. f'(z) = (z+2)*(4) + (4z + 2)(2)(z + 2) |
= 2(z + 2)[(z +2)(2) + 4z + 2] -1 |

— 2z +2)(62 + 6) = 12(z + 1)(z + 2) “2"‘”(_1 N o
f'(z) <0 & -2<z<-1s0fisCDon(-2,—1)andCUon (12 172
P

(—00, —2) and (—1,00). IP at (—2,0) and (-1, -1)

7.y=f(z) =22° —5z°+1 A. D=R B. y-intercept: f(0) =1 C. Nosymmetry D. No asymptote
E. f'(z) = 10z* — 10z = 10z(z® — 1) = 10z(z — 1)(z* + 2 + 1), 50 fl(z) <0 & 0<z<land
f'(z) >0 < x<O0orz > 1 Thus, fisincreasing on (—00,0) and (1, 00) and decreasing on (0, 1).
F. Local maximum value f(0) = 1, local minimum value f(1) = —2 H. y
G. f'(z) = 402> — 10 = 10(4z® — 1) s0 f"(z) =0 & z = 1/ V4.

.

so fis CD on (—00,1/V/4) and CU on (1/V/4, 00). 1P

o™~

() >0 o z>1/Vdand f'(z) <0 x<1/V4,

1.-2)

IP at (%1 - 5—(;3_55> ~ (0.630, —0.786)
8. y = f(z) = 20z° — 325 A. D =R B. y-intercept: f(0) = 0; z-intercepts: flz)=0 <«
—323(22 - 2)=0 & z=0o0r +,/20/3 ~ £2.582 C. f(-=z) = —f(2), so f is odd;
the curve is symmetric about the origin. D. No asymptote
E. f'(z) = 60z* — 15z% = —152%(z? — 4) = —1522(z + 2)(z — 2).50 f'(z) >0 & —2<z<0or
0<z<2and f'(z) <0 < z<—2orz>2 Thus f is increasing on (—2, 0) and (0, 2) [hence on (—2,2)

by Exercise 4.3.65] and f is decreasing on (—o0, —2) and (2, 00).

F. Local minimum value f(—2) = —64, local maximum H. y
40 (2.64)
value f(2) =64 G. f"(z) =120z — 60z° = —60z(z® — 2). ol TP
f'(z)>0 & < —2or0<z<V2 f'(z) <0 & N I ) O/ TN
1 213 *
—V2 < z < 0orz > /2. Thus, fis CUon (~oo,—\/§) P 1740
(—2,-64) —80

and (0, v/2).and f is CD on (*\/5, 0) and (\/5 o0). IP at

(—v/2, —28+v/2) ~ (—1.414,-39.598). (0,0). and (v2.28v2)
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Sy=flx)=z/(z-1) A D={z|x#1}=(-00.1)U(l,x) B. z-intercept = 0,

10.

1.

y-intercept = f(0) =0 C. Nosymmetry D. lim =1l.soy = lisaHA.

r—too T —

lim ——— = —00. lim —2— = o0, 50 z =1isaVA. H. R
a—1- T — 1 so1+ T — 1 k
E. f'(z) = (-l-z__ -1 5 < 0forz # 1. so f is decreasing y=1 :'

C @-1? (@)

on (—00,1) and (1,00). F. No extreme values

G. f,,(m):ﬁx) & x> 1.50 fisCUon (1,00) and CD

on (—o0,1). No IP

y=z/(z—1)° A D={z|z+# 1} = (~00,1) U (1,00) B. z-intercept = 0, y-intercept = f(0) =0
C. No symmetry D. zll;IjI:loo @17 =0.s0y =01isaHA. i:rrll ﬁ =o00,50x = lisa VA.
p— 2 —_— F— f— p—
E. f'(z) = (2= 1)) ~2(2)(z = 1) — 13. This is negative on (—oco, —1) and (1, 0o) and positive on

(z—1)* (-1

(=1,1).s0 f() is decreasing on (—oc0, —1) and (1,00) and increasing on (—1,1).

F. Local minimum value f(—1) = — 3. no local maximum. H. Y

gy~ E=DPED+ @+ )E) @ -1 20z+2)
G. f(z) = @1y M This is
negative on (—oo, —2). and positive on (—2, 1) and (1,00). So fis CD

-4 -2 of !
on (—oco, —2) and CU on (—2,1) and (1, 00). IP at (—2,—%) - Y 4 x
y=f(z)=1/(z>-9) A. D= {z|z#+£3} = (—00. -3) U (—=3,3) U (3,00)
B. y-intercept = £(0) = — . no z-intercept  C. f(=z) = f(z) = fiseven: the curve is symmetric about
the y-axis. D. lim 5 =0, soy=0isaHA. lim = —o00, lim = 00,
z—too 2% — 9 z—3— 1% —9 z—3+ 22 — 9
z_l}g_ 229 001_131_1;+ 2z _g — ~%0. soz=3andz = —3are VA.
2z

E. f'(z) = —m >0 & <0 (@#-3)s0fis increasing H.

on (—o0, —3) and (-3, 0) and decreasing on (0, 3) and (3, c0) .

F. Local maximum value f(0) = -3

Gy — —2(2® - 9)* + (22)2(2” — 9) (22) _ 6(z*+3) R
(22 - 9)* (22 - 9)°

’>9 & z>3orz< —3.50 fis CU on (—o0, —3) and (3,00)

and CD on (-3, 3). No IP
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12.y=f(z)=2/(z2"—9) A. D={z|z#+£3}=(-00.-3)U (—3,3) U (3,00) B. z-intercept = 0,

y-intercept = f(0) = 0. C. f(—z) = —f(x). so f is odd: the curve is symmetric about the origin.

D. zll'rilwmz ~5 =0, soy = 0isaHA. ml_lgl+ R oo.wl_lgl_ g —00,
hn’;», i 00, lima‘:r—;c:—g = —o0.s0z = 3and x = —3 are VA.
2
N €. -9)—z(2z)  *+9 . .
E. f'(z) = @ _9)? =— @9y < 0 (z # £3) so f is decreasing on (—o0, —3), (=3, 3).
and (3,00). F. No extreme values H - 3] 7
2
G. ['(z) = 2z(2” —9)" — (z2 +9) - 2(2® — 9)(2%)
(22 — 9)* .
22 (2? + 27) 0
:—(5—9—)3—>0when—3<x<00rz>3, :
72 —
so f is CU on (—3,0) and (3, 00): CD on (—o0, —3) and (0,3).
IP at (0,0)

13. y= f(z) =z/(z*+9) A. D=R B. y-intercept: f(0) = 0; z-intercept: f(z) =0 <« z=0

C. f(—z) = —f(x).so f is odd and the curve is symmetric about the origin. D. lim [z /(z*>+9)] =0.50

e . L (@49 -2 9-2" _ (B+x)B-0)
y=0isaHA;noVA E. f'(z) = 107 _($2+9)2_ T >0 <

—3 < z < 3.0 f is increasing on (—3, 3) and decreasing on (=00, —3) and (3, 00).
F. Local minimum value f(—3) = —¢. local maximum value f3) =%

(2% +9)° (~22) — (9 — %) - 2(2” +9)(22)

. " — H. y
C o)(?+9)[-(@*+9) —209- z?)] (.3)
B (z2 +9)*
:M:o o 1=0+V2T==+3V3 (-3.-%)
(x2 +9) \

f'(z) >0 & 33 <z<0orz>3+3.50 fisCUon
(—3+/3,0) and (3+/3,00). and CD on (—o0,~3+/3) and (0.3V/3).

There are three inflection points: (0,0) and (£3 v/3. +15 V3).

14y = f(z) =2? /(z>+9) A. D=R B. y-intercept £(0) = 0: z-intercept; f(z) =0 < z=0

C. f(—x) = f(x).so f is even and symmetric about the y-axis. D. Igrinoo [2?/(«* + 9)] =Lsoy=1




15.

16.

SECTION45 SUMMARY OF CURVE SKETCHING O

(2% +9)(2z) — 2*(2z) 18z
(€2 +9)° (2249

isaHA;no VA E. f'(z) = s >0 < x> 0.s0 fisincreasing on

(0, 00) and decreasing on (—co,0). K. Local minimum value £(0) = 0: no local maximum

, (= +9)°(18) — 18z - 2(2® +9) - 2¢  18(2® +9) [(a® +9) — 42?] _18(9-32°)
G. f (m) = [((1,‘2 + 9)2]2 - ($2 + 9)4 (1?2 + 9)3
- _54(z+\/§)(x3_\/§) >0 & —V3<z<+3
(z2+9)
so fis CUon (—v/3,v/3) and CD on (=00, —v/3) and (v/3, 00). H. ¥ =1
There are two inflection points: (++/3, 1).
0 X

315

y=f(z) = xw—zl A. D={z|z#0}=(-00,0)U(0.00) B. No y-intercept; z-intercept: flz)=0 &
. T—1 . .oz —1 .

=1 C. Nosymmetry D. zE?x?ZO'SOyZOISaHA'il—I}}) - = —o00.s0z = 0isa VA.

E. fl(z)= 2’1 _(:(;); 12 = _wlj 2 _ _(J;; 2), sof'(z)>0 & 0<z<2and

f(z)<0 & z<O0orz>2 Thus. fis increasing on (0, 2) and H. y

decreasing on (—00, 0) and (2, 00). (2%) (3%)

1

F. No local minimum. local maximum value f(2) = 1.

" 2 (- - [~(z-2)]-32° 22° 62 2z-3

G. f(z) = =D - [@-2) 3% _2Az-3)
(z®)

6 4

f"(x) is negative on (—oo, 0) and (0, 3) and positive on (3, 00). so f is

CD on (—00,0) and (0, 3) and CU on (3, 00). IP at (3.2)

2
-2
y=f(z)=2 p A- D={z|z#0} =(-00,0)U(0.00) B. No y-intercept; z-intercepts: f(z) = 0

& z=4v2 C. f(=z) = f(z).s0 f is even: the curve is symmetric about the y-axis.

2 2

. —2 . . —2 .

D. lim Z =0.50y = 0isaHA. lim < = —00.s0x = 0isa VA.
z—too g4 z—0 g4

E f(z) = et 2r — (2 —2)(42®)  —22° + 82° _—2(2® —4) _ 2z +2)(z-2)

(:c“)2 - 8 5 5 '

f'(z) is negative on (—2,0) and (2. 00) and positive on (—oco, —2) and (0,2).s0 f is decreasing on (—2, 0) and

(2,00) and increasing on (—oo, —2)and (0,2). F. Local maximum value f(£2) = 2. no local minimum.
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—4z) +2(z% —4) -5z 2z*[-22% +5(a® —4)]  2(3z% - 20)

G- fl/(m):ws'(

($5)2 210 6
f'(z) is positive on (—oo, -/ 2 ) and ( 2 oo) and negative on Ho oy (.4

P ip
(=/22.0) and (0.y/% )50 fisCU on (00, —/% ) and =t —

(V2.0) 2.0
( %.,oo) and CD on (—,/339_0) and ((), 2_3?> )
. 20 21 o B
Pat (/2 25) ~ (2.5820.0.105)
2 2 .
x (z*+3) -3 3 4 '
17.y = f(z) = Fr3- 213 =1- 713 A. D =R B. y-intercept: f(0) = 0; z-intercepts:

flzy=0 & z=0 C. f(-z)= f(z). so f is even; the graph is symmetric about the y-axis.

2

D. lim ——— =1.s0y=1isaHA.NoVA. E. Using the Reciprocal Rule,
z—too 22 + 3

, _ a. —2x _ 6x
fz)=-3 (22 +3)° (22 +3)

= f()>0 < z>0and f'(z) <0 & <050 fis decreasing

on (—00,0) and increasing on (0,00). F. Local minimum value f(0) = 0. no local maximum.
_ (@®+3)° 6 —6z-2(x*+3) 2z
- (2> +3)%)* P
6(c? + 3)[(z* + 3) — 427
R
6(3-3¢%) _ —18(x+1)(z 1) (1.4)
(z% +3)3 (z? +3)3 0.0) x

G. f'(z)

f"(z) is negative on (—oo, —1) and (1, o0) and positive on (—1,1), so f is CD on (=00, —1) and (1, 00) and

CUon (~1.1). IPat (£1, 3)

3 - .
18. y = f(z) = zs +i A. D= {z|x# -1} = (-00,—1) U (—1,00) B. z-intercept = 1,
X
3 3
. ooz =1 . 1-1/x .
y-intercept = f(0) = —1 C. No symmetry D. IBI:?OQ Y = zgliloo m =1.soy = lisaHA.
231 3 _ .
lim ——— =ocand lim = —00,50x = —1lisa VA.
z——1- 3+ 1 z—-1+ 23 +1
3 2\ _ (.3 _ 2 . 2
E. fi(z)= (2" + 1) (327) (:52 HE) = —6—:6——2 > 0 (z # —1) so f is increasing on (—o0, —1)
(z3+1) (z3+1)

and (—=1,00). F. No extreme values



19.

2. y =

2. y
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12z(z® +1)° — 622 - 2(2® + 1) - 322 ; ‘[
G. ' = z(z” +1) - 4( ) H. |
(z3+1) y=1

_ 9.3 1
:%_2_2)>0 & z<-lorl<z< 5=, : /—_
(3 +1) V2 o/ x

so f is CU on (—oo, —1) and ((), %) and CD on (-1, 0) and (%oo) E[(O.—I)
x=—1i

Pat(0,-1). (5.-3)

y=f(z)=2v5—z A. Thedomainis {z|5— x>0} = (-0c0,5] B. y-intercept: f(0) =
z-intercepts: f(z) =0 <« x=0.5 C.Nosymmetry D. No asymptote

B f@) =2 36072 () 460" 1= 46 -2) " [0+ 2(5 - 2)] = 102 > 0

T < .50 f is increasing on (—00, 1¢) and decreasing on (2.5).

F. Local maximum value f(42) = 201/15 ~ 4.3; no local minimum H. (o M)
y 309
2(5 — z)'/?(=3) — (10 — 3z) - 2(1)(5 — z)"1/3(~1
. (o) = 20708 (10 89) - 2(3)6 =) 2-)
(2\/5—m) >
_B-2)""?[-6(5—z)+ (10-3z)] _ 3z —20
B 4(5 — z) 4(5—x)3/2
f"(z) < 0forz < 5.50 f is CD on (—00, 5). No [P

flz)=2yz -2z A. D=[0,00) B. y-intercept: f(0) = 0; z-intercepts: f(z) =0 =

2Vr=2 = 4dr=1 = 4dr-22=0 = zd-z)=0 = z=0.4 C. No symmetry

D. No asymptote E. f'(x) = % —-1= % (1 — /z). This is positive for z < 1 and
negative for z > 1. so f is increasing on (0, 1) and decreasing on (1, 00). H.»

an
F. Local maximum value f(1) = 1. no local minimum.

! 1 0
" _ —-1/2 _ —3/‘7
G.f(z)—(x —1) =327 = o5 < Oforz > 0,

4\1

so f is CD on (0, ). No IP

f(x)=vz2+1—-2 A.D=R B. Noaz- intercept. y-intercept = 1 C. No symmetry

D. lim (\/x2+1—x) = o0 and

. . Vi +1+z 1
lim (vVz2 +1—2) = lim 2 +1— = lim ———— =
z-»oo( ) z—»oo( ),/xQ _’_1- z—»oo1/$2+l+x
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VP r1
soy=0isaHA. E. f'(z) = ——m—— —1=2_¥Z +1
z2+1 vz +1
f'(z) <0,so0 fisdecreasing on R. F. No extreme values

" 1
G. f'(z) = —_(z2 n 1)3/2

> 0,s0 fisCUonR. NolIP

1 ¥‘

0 x

2 y=f(z) = m A. D={z|z/(x—5) >0} =(-00,00U(5 00). B. Intercepts are 0.

T 1 .
C. Nos t D. 1 A/ = 1l 1/ =15 =1i .
0 symmetry I_I'Ijrzloo po—- I_{riloo 1-5/z 1.soy =1lisaHA

lim
z—5t r—5

x

= 00,

s oy Lz T _(=B) 5 3-1/2 . .
soxr=>5isaVA. E. f'(z)= 2 5 ( = —2[z(z - 5) ] < 0, so f is decreasing on

2\ —

z — 5)?

(~00,0) and (5,00). F. No extreme values
G. f"(z) =3[z (z - 5)°] "* (¢ — 5)*(4z — 5) > 0 forz > 5, and

f"(z) < 0forz < 0,s0 fis CUon (5,00) and CD on (-0, 0). No IP

1 A

x=35

2. y=f(z) =x/Vz2+1 A. D=R B. y-intercept: f(0) = 0: z-intercepts: fz)=0 = z=0

C. f(—z) = —f(z), so f is odd; the graph is symmetric about the origin.

. . T . z/x . z/x
D. lim f(z) = lim ——— = lim ——=—— = lim
:c—»oof( ) z—oo /2 + 1 z—00 1/(1;2.},1/1; z—00
= 1 =1
1+0

and

lim f(z) = lim ————= = lim = lim
T— —00 T— —00

1 1
= lim = = —
am-o0 —\/T+1/z2 —V1+0

soy = £1 are HA. No VA.

2x
ViZtl-z ——
m ovzE41  zi+1l-a° 1

! = = =
E. f'(z)= [(x2 4 1)1/2)2 (22 + 1)3/2 @ + 1)3/2
F. No extreme values
_ -3 ,
G. f'(z)=—-2(z*+1) /2 9 = G:TWTUB)EW so f"(z) > 0 for

¢ < 0and f(z) < 0forz > 0. Thus, f is CU on (—00,0) and
CD on (0, 00). IPat (0,0)

Z2+1 e—o-coy/r241/x I—'—wm/(_\/ﬁ)

1
— e = lim —V——=
VI F1/Vx2 == /1+1/x?

> 0 for all z. so f is increasing on R.
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y=f(z)=2zv2-2% A. D=[-v2.v2] B. yintercept: f(0) = 0; z-intercepts: f(z) =0 =

z=0,£v2 C. f(—z) = —f(z). s0 f is odd; the graph is symmetric about the origin. D. No asymptote

2 2
, -z 5 T +2-—z° 2(1+z)(l-2z) ,, .. ative f
. =T — 2—-22= = . ' (x) is negative for
LS = =tV = — = Vil (@)isne
—V2 <z < -land1 < z < /2. and positive for —1 < z < 1. so f is decreasing on (—+/2, 1) and (1, V2)
and increasing on (—1,1). F. Local minimum value f(—1) = —1. local maximum value f(1) = 1.
VI 22 (—dg) — (9 — 9272 ——F
2 —z?(—4z) - (2 -2z )m A
G. f(z) = 5 H. y
[(2 —22)1/?] (D

(2 —2%)(—4z) + (2 — 22°)z 7
(2 — z2)3/2 (—/2.0)

0.0 w207
2z° — 6z 2z(z? — 3)

B (2—22)3/2 (2 — 22)3/2

(=1L.=1)

Since 2° — 3 < O for z in [-V2, V2], f"(z) > 0 for —v/2 < z < 0 and f"(z) < 0for0 < 2 < /2. Thus. f is

CU on (—v/2,0) and CD on (0,+/2). The only IP is (0, 0).

y=f(z)=v1—2%/cr A. D= {1’

lz| <1,z # O} =[-1,0)U(0,1] B. z-intercepts +1. no y-intercept

N -
C. f(=z) = — f(). so the curve is symmetric about (0,0). D. lim vi—a* =00, lim yi—= = —00.

z—0+t x -0~ T
2 2 2
e , (—;c/\/l—x)—\/l—a: 1 . )
sor=0isaVA. E. f'(z) = . = T < 0.0 f is decreasing on (—1,0)
and (0,1). F. No extreme values H. ¥
2 — 3z’
G flla)=——"""— >0 & —1<w<—\/zor
IL‘S(I _ 21/'2)3/2 3 —1
0 1 x

0<z< \/g,SOfisCUon <—1,_\/g) and (0\/5) and CD o
(—\/g.o) and (\/g 1).IPat (i\/gi%)

y=f(z)=z/vVa? -1 A. D= (-o0. —1)U(1.00) B. No intercepts C. f(—=z) = —f(z). so fis odd;

the graph is symmetric about the origin. D. lim . and lim ——er — —1,s0y = +1 are HA.

T—00 /p2 — ] z——00 /2 — ]

limJr f(z) =4ocoand lim f(z) = —oco.sox = +1 are VA.
z—1

z——1"

Vit —1-—g —2 2 . o B
E f(z)= z2—1 z°—-1-2° 1
: *)= (2 — 1)1/2]2 T (@2 - 1)3/2 = (22 —1)3/2

< 0.0 f is decreasing
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on (—oo,—1) and (1,00). F. No extreme values H

; . X:—lé y :L
G. £/(0) = (DD - 1) 2w = R
f"(z) < 0on (~o0,—1)and f'(z) > 0on (1,00).s0 f is CD on , ______________ *
Poy=-1

(—o00, —1) and CU on (1, 00). No IP

21. y = f(z) =z — 3z*/®> A. D=R B. y-intercept: f(0) = 0: z-intercepts: f(z) =0 = z= 3z!/? =
B=2T2 = 22-272=0 = =z(x*-27)=0 = z=0. +3v3 C. f(—z) = —f(z). so f is odd:

1 /3 -1

the graph is symmetric about the origin. D. No asymptote E. f'(a:) =1z =1 — ="——.
22/3 22/3

f'(z) > 0 when |z| > 1and f'(z) < 0 when 0 < |z| < 1.s0 f is increasing on (—o0,—1) and (1, 00). and

decreasing on (—1.0) and (0, 1) [hence decreasing on (—1. 1) since f is H. v )y
(-1.2
continuous on (—1.1)]. F. Local maximum value f(—1) = 2. local (3\/3&

minimum value f(1) = -2 G. f"(z) = §$_5/3 < 0Owhenz <0 /T\/_ 0 x
(=33.0)

and f”(z) > 0 when z > 0, so f is CD on (—00,0) and CU on (0, 00). (1.-2)

1P at (0, 0)

2. y = f(z) = 2%° - 52°/% = z*/3(z—5) A. D=R B. z-intercepts 0. 5: y-intercept 0 C. No symmetry

D. lim z%3(z —5) = oo, so there is no asymptote H. Y
z—Foo 0 /
E f/(z)=53227 - Qo= 32722 -2)>0 & z<0or -1 2 5 x

& > 2.0 f is increasing on (—00.0). (2, 00) and decreasing on 0,2).

F. Local maximum value £(0) = 0, local minimum value f(2) = —3 V4 (—1.-6)
G. f'(z) = %x—l/B + 1—9010_4/3 = %z_‘”g’(x +1)>0 &

2> —1.s0 f is CUon (—1,0) and (0, 00), CD on (—oo. -1).

IPat (—1,—6)

2. y=f(z)=z++|z| A.D=R B. z-intercepts 0. —1; y-intercept 0 C. No symmetry

D. zlin;() (m + |:c|) = 00, acEIlloo (m + [m\) — —0o. No asymptote E. Forz > 0. f(z) =z + Vr =

f’(m):l—\—%ﬁ>0.sofincreases0n(0,oo).For:c<0.f(x):m+\/—_a:_ = f’(m):l—z\/l:E>0
& 2y-z2>1 & —z>31 & x<—j. 0 fincreaseson (—00, —3) and decreases on (-5-0).

F. Local maximum valuef(—3) = §.local minimum value f(0) = 0 H. y

G. Forz > 0. f'(z) = —%m’3/2 = f"(x) <0.s0 fisCDon (_%‘ %)

(0,00). Forz < 0. f"(z) = f%(falc)‘s/2 = f’(z) <0.s0 fis N

CD on (—00,0). No IP N x
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30.y=f(z)= /(2 —1)°=(a*—1)*®* A. D=R B. z-intercepts +1. y-intercept 1 C. f(—z) = f(z). so

the curve is symmetric about the y-axis. D. zligloo(ﬁ —1)%3 = %0. no asymptote

E fl(z)=42(2*-1)7"% = f(z)>0 & z>lor—1<z<0.f(z)<0 & z<—lor
0 <z < 1. So f is increasing on (—1,0). (1, 00) and decreasing on (—oo, —1). (0,1). F. Local minimum
values f(—1) = f(1) = 0. local maximum value f(0) = 1 H. Y
G /() = (e~ 1) 4 da(-3) (0 - 1) o) (3.3
(22-3)(a>-1) >0 & |2/>V3
so fis CU on (—o0, — \/§) (\/§ o) and CD on (~\/§ -1).
(=1,1).(1,v/3). IPsat (£V/3. ¥/4)

(V3.4)

4
3
4
9

3. y= f(z) =3sinz —sin®z A. D=R B. y-intercept: f(0) = 0: z-intercepts: f(z) =0 =
sinz (3 — sin? z)=0 = sinz=0 ([sincesin?2<1<3] = z=nmrnan integer.
C. f(—2) = —f(z). so f is odd; the graph (shown for —27 < z < 271) is symmetric about the origin and periodic
with period 2. D. No asymptote E. f'(z) = 3cosz — 3sin®zcosz = 3cosz (1 —sin®z) = 3cos® z.
fl@)>0 & cosz>0 & z€ (2nm- 3:2nm + T for each integer n. and f'(z) < 0
cosz <0 & z€ (2nm+ 5. 2nm + 37”) for each integer n. Thus, f is increasing on (2n7r - %.2nt+ %)
for each integer n. and f is decreasing on (2n7r + 3. 2nmw + 37") for each integer n.
F. f has local maximum values f(2nw + %) = 2 and local minimum values f(2nm + 3—2"—) = -2
G. f"(z) = —9sinzcos’z = —9sinz (1 —sin’z) = —9sinz (1 -sinz)(1+sinz). f'(z) <0 <
sing > 0andsinz # +1 & z € (2nm. 2nm + ) U (2nm + Z.2nm + ) for some integer n.
f'(x)>0 & sinz<Oandsinz#+1 o ze (@n-1)m. (2n - D)7 + 3)U((@n— 17+ Z.2n7)
for some integer n. Thus. f is CD on the intervals (2n7, (2n+ 1)7)and  H. (%)

2
((2n+3)m 2n+1) 7) [hence CD on the intervals (2n, (2n+1)m)] { \ 1

for each integer . and f is CU on the intervals ((2n — 1), (2n - 3)7)

and ((2n — 3)m.2n7) [hence CU on the intervals ((2n — 1)m. 2n7)] for

each integer n. f has inflection points at (n,0) for each integer n.

32. y = f(z) =sinz —tanz A. D= {z|z#@2n+ DI} B.y=0 & sinz=tanz = 2%
coszx
sinz =0orcosz =1 < = nn (z-intercepts). y-intercept = f(0) =0 C. f(—z) = —f(x). so the curve
is symmetric about (0,0). Also periodic with period 27 D.  lim (sinz — tanx) = —o0 and

z—(mw/2)~

%ir? )+(sinx—tanm) =00,80% = nm + I are VA.
Tz—(m/2
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34.

35.
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E. f/(x) = cosz —sec? z < 0. s0 f decreases on each interval in its
domain, thatis. on ((2n — 1)3,(2n +1)%) . F. No extreme values
G. f'(z) = —sinz — 2 sec’ ztanz = —sinz (1 + 2sec’ z). Note
that 1 + 2sec® = # O since sec® z # —3. f"(z) > 0for =5 <z <0

and 3 < z < 2m.so0 fis CUon ((n — 1), nx) and CD on

(nm. (n+ 3)m). f has IPs at (n, 0). Note also that f'(0) = 0. but

fi(m)=-2.

y=f(z) =ztanz. -5 <z <3 A D= (-%.%) B. Interceptsare 0 C. f(—z) = f(z). so the curve is

symmetric about the y-axis. D. lim ztanzr =coand lim ztanz =oo0,s0% = Z and
z—(n/2)~ z——(n/2)* )
z = —7are VA. E. f'(z) = tanz + zsec’z >0 & 0<z <73, H. ; Y
so f increases on (0. 3 ) and decreases on (-%.0). - _% x=Z
F. Absolute and local minimum value f(0) = 0. ‘:
G. y”:25ec21+2mtanxse(:2m>0f0r—§<w<§, so fis CU S "

on(-%,%).NolP

y=f(z) =2z —tanz. I <z <3 A D=(-3. ) B. y-intercept: f(0) = 0: z-intercepts: £(0) =0

o 2r—tanz < z=0orz~+1.17 C. f(—z)= —f(z).so f is odd: the graph is symmetric about the

origin. D. lim (2z —tanz) =ocoand lim (2z —tanz) = —00,502 = % are VA. No HA.

z—(—7/2)% z—(m/2)"
E. fl(z)=2-sec’z<0 & |[secz|> VZ2and f'(z) >0 < [secz| < /2.0 fis decreasing on
(—%.-%). increasing on (—Z.%). and decreasing again on (%.%) F. Local maximum
value f(Z) = 5 — 1. local minimum value f(-3)=-%+1 H. y
G. f'(z) = —2secx-secrtanz = —2tan z sec T (%_%_1)

= —2tanz(tan®z + 1)

: 0
sof’(z) >0 & tanz <0 < ~Z<z<0.and f'(z) <0 & B *
=255 *=2

tanz >0 & 0<z<Z. Thus, fisCUon (=%.0) and CD i

on (0.%). f hasanIPat (0,0).

y=f(z)=3iz—snz.0<z<3r A D= (0,37) B. No y-intercept. The z-intercept. approximately 1.9,

can be found using Newton's Method. C. No symmetry D. No asymptote E. f'(z) = % —cosz >0 &

5T

ks 27
3

. 1 5 . H i s P i« . aci
cosz <3 & F<z< Sorg <z< 3m, so f is increasing on (3, ) and ( 3 .37r) and decreasing
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on (0. %) and (3F, ). F. Local minimum value f(3)=%- -? H.

local maximum value f(’T") = %” + 3§ local minimum value

fIE)=11 -8 G, f'(a)=sinz>0 & O<z<mor

2m <z <3m.so fis CUon (0,7) and (2, 37) and CD on (. 2).
IPs at (7, Z) and (27, 7).

y=f(z) =cos’x —2sinz A. D=R B. y-intercept: f(0) =1 C. No symmetry, but f has period 27.
D. Noasymptote E. y' = 2cosz (—sinz) — 2cosz = —2cosz(sinz+1).y =0 & cosz=0o0r
sinz = -1 & z=(2n4+1)5. 3y > 0whencosz < 0sincesinz + 1 > 0 for all . Soy’ > 0and fis

increasing on ((4n + 1), (4n+3)%):y/ < Oand f is decreasing on (4n—1)3,(4n+1)Z). F. Local

maximum values f((4n + 3)Z) = 2. local minimum values f((An+1)2) = -2
G. y' = —2cosz(sinz+1) = —sin2z — 2cosz =

y
y":—20032x+2sina::~2(1—2sin2m)—i—QSina: H.

12
=4sin’z + 2sinz — =2(2sinz — 1)(sinz + 1) /\ /\

Y =0 < sinz =Jor—1 = T =g +2nm. °F 4 2nm, or i i
37”+2n7r.y”>()andfisCU0n(%+2n7rﬂ%"+2n7r);

22 +

y" <0and fisCDon (3 + 2nm, & +2(n+ )m).

[Ps at (% + 2nm, —1) and (3% + 2nm, -3)

y = f(x) =sin2z — 2sinz A. D=R B. y-intercept = f(0) =0. y =0 <

2sinz = sin2z = 2sinzcosz < sinz = Oorcosz = 1 < & = nm (z-intercepts)

C. f(=z) = — f(=). so the curve is symmetric about (0,0).

Note: f is periodic with period 27. so we determine E—G for —7r <z <m D. Noasymptotes

E. f'(a:)=2c:052x—2cos:v=2(2cos2w—l—cos:c)=2(2cos:c+1)(cosx—1)>0 & cosa:<—%

& << —2—; or %" <z < m,so fis increasing on (—7r. —%") (2—3",7r) and decreasing on (—%", %")

F. Local maximum value f(-%) = %ﬁ H. y[

local minimum value f(2%) = —332@

G. f'(z) = —4sin 2z +2sinz = 2sinz (1 — 4cosz) = 0 when = 3¢ —
/ —a 27 |m x

3
z=0.Emorcosz = 1. Ifa = cos™! 1. then fis CU on (—a,0) and
(e, ) and CD on (—7, —a) and (0, ).

IPs at (0,0), (&,0). (o, ~24E). (—aq, ).
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f(z) =sinz —z A. D=R B. z-intercept = 0 = y-intercept H. ¥
C. f(—z) =sin(—z) — (—z) = —(sinz — x) = —f(z). so f is odd.
D. Noasymptote E. f'(z) = cosz — 1 < 0 forall z, so f is decreasing
on (—00,00). F. Noextreme values G. f’(z) = —sinz =
f'(z) >0 & sinz<0 & (2n—1)7 <z <2nm.sofisCUon
((2n — 1), 2n7) and CD on (2nm, (2n + 1)), n an integer. Points of
inflection occur when z = n.
when

sinz cosz #1 singx 1—cosz sinz(l—cosz) 1-—cosz

y:f(m):m = Ttcosz 1—cosz sin? z ~ T sinz = csca - cota

A. The domain of f is the set of all real numbers except odd integer multiples of 7. B. y-intercept: f(0) =0;

z-intercepts: ¢ = nmr, n an even integer. C. f(—z) = —f(x).s0 fisan odd function; the graph is symmetric
about the origin and has period 2. D. When n is an odd integer. lim f(z) =ocoand lim . f(z) = —o0,
z—(nw)” z—(nm)

so x = n is a VA for each odd integer n. No HA.

, (1 +cosx) - cosz — sinz(—sinz) 1+ cosz 1 ,
. = = = . > 0 for all cept odd
E. fi(=) (1 + cosz)? (1+cosz)? 1+cosz f(=) orall wexcep

multiples of 7, so f is increasing on ((2k — 1)m, (2k 4 1)) for each integer k. F. No extreme values

sin .
G. f’l(m):(—1'4_l—was;—w)_2>0 = sinz>0 = H.x—-:—37'r x=oTy x=m x=:377

z € (2k, (2k + 1)7) and f”(x) < 0on ((2k — 1), 2kn) AT .

for each integer k. f is CU on (2km, (2k + 1)) and CD on

((2k — 1)m, 2km) for each integer k. f has IPs at (2km,0)

for each integer k.

.y = f(z) =cosz/(2+sinz) A. D=R Note: f is periodic with period 2. so we determine B-G on [0, 27].

B. z-intercepts %, 3, y-intercept = f (0) =+ C. No symmetry other than periodicity D. No asymptote

_ (24 sinz)(—sinz) —cosz (cosx)  2sinz+1
N (2 +sinx)? (2 +sinz)?’

E. f'(z) f'(z) >0 & 2sinz+1<0

- 1 7n 1 C < 7x 1z . 7x\ (1l
sinz < —3 & X <z < HF s fisincreasing on (Zz, 1) and decreasing on (0,7Zx). (6=, 27) .
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F. Local minimum value f (%) = ——, local maximum value f(11%) = e
. 2 _ . . _ .
G. f'(z) = — (2+sinz)?(2cosz) — (2sinz 4 1)2(2 +sinz)cosz _ _2cosz (1 —sinx) S0 o

(2 +sinz)* (2+sinz)3

cosz <0 & %<a:<%”,sofisCUon(%,%")andCDon(O,g)and(%",Qw). IPat (%,0). (32,0)

~<

H.

/
5
\N,!

Z
3
¢

M.y=1/(14+e*) A D=R B. No z-intercept; y-intercept = f(0) = 1. C. No symmetry

D. lim 1/(1+e7®) = 1“41-_ =1and hm 1/(14€e™) = 0 (since hm ™% = 00), 5o f has horizontal
asymptotesy = Oandy =1. E. f'(z) = — (1+ e”z)_2(—e_’) =e7/(1+ e_m)2. This is positive for all z,
so f is increasing on R. F. No extreme values

(1 + 6‘1)2(—6"1) - 6“1(2)(1 + e“z) (-e_m)
(1+e=)*

G. f(z) =

e "(e™® — 1)
(1+e-=)3

The second factor in the numerator is negative for z > 0 and positive for

x < 0, and the other factors are always positive, so fis CU on (—o0, 0)

and CD on (0,00). £ has an inflection point at (0, 1).

2. y=f(r)=e*—-e" A.D=R B. y-intercept: f(0) = 0; H. y
5--
z-intercepts: f(z) =0 = e =¢® = =1 = z—0 ol
C. No symmetry D. lim _ €’® —e® = 0,50y = 0is a HA. No VA. 3l
4 x x x T / T 27
E. f'(z) =2e*® —¢®* = ¢ (2¢" -1).s0f'(z) >0 & e >1 &
14
z>Ing=-In2and f'(z) <0 <« <3 & z<Inisofis -3 2 -l
i 1 : : 1 3 113 X
decreasing on (—oo, In %) and increasing on (In3,00). F. Local (ng.—7) —11-
1 1
k-4
2073

minimum value f(]n%) = e?ln(1/2) — eln(1/2) — (%)2 _ % = _:11
G. f"(z) =4e* — e* = e*(4e® —1).50 f"(z) >0 =
> & s >hland (@) <0 o z<Ini.

Thus, fis CD on (—oo,In 1) and CU on (In §,00). f has an IP at (lni,(i)Z - i) =(lnj, -3).
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43.

44,

45,

y=f(z)=xzlnz A. D= (0,00) B. z-intercept whenlnz = 0 < x=1,no y-intercept
C. Nosymmetry D. lim zlnz = oo,

. 1 . 1 .
zlirng zlnz = mh_f(l)lJr 1n/—i Z zh_féh _—IL/ZE = Ihjéh (—z) =0,n0 H

asymptote. E. f'(z) =Inz+1=0whenlnz=-1 & z= et
f(z)>0 & Ihz>-1 & z> e~ ! so f is increasing on

(1/e. 00) and decreasing on (0,1/e). F. f(1/e) = —1/eis an absolute

and local minimum value. G. f” (z) = 1/z > 0.so f is CU on (0, 00). 0 We.~1/e) *

No IP

y=f(z)=e’/z A. D={z|z#0} B.Nointercept C. Nosymmetry D. lim & 2 lim eT = 00,
r—oo I x— 00

lim e =0.soy =0isaHA. lim € — . lim — = —co,s0z = 0isa VA
r——00 T z—0t+ T z—0— T
Ef@)=255>0 & @-1)f>0 & z>1 H. y
. v
so f is increasing on (1, 00). and decreasing on (—oc0.0) and (0,1). T o
F. f(1) = eisalocal minimum value. 0 x
x T T z (.2 ;
G. '(z) = z?(ze”) — 2x(ze” — e”) _¢ (2 -2z +2) 50

o 73
o 2> 0since z® — 2z +2 > 0forallz. So f is CU on (0, c0) and CD
on (—00,0). NolIP

y=f(zx) =ze”® A. D=R B. Intercepts are 0 C. No symmetry H 7 ( 1) ( 2)
o) (2.5
1 . -,
D. lim :Ee_’:1'1m£ilim—=0.soy=01$aHA. M e—
T-—00 z—o0 €% z—oo e¥ 0 1 2 x
lim ze®=-o00 E. f(z)=e®—ze*=e?(1-2)>0 &

z < 1, so f is increasing on (—oo, 1) and decreasing on (1,00) .
F. Absolute and local maximum value f(1) = 1/e.

G. f'(¢)=e"(x—2)>0 & z>250fisCUon (2 00)andCDon (—00,2). IPat (2,2/€?)

Ly = f(z) = In(z® — 3z +2) =In(z — 1)(z — 2)]

A. D={zinR: 2?2 -3z +2>0} = (—00,1) U (2.00).
B. y-intercept: f(0) = In2; z-intercepts: flz)=0 © 2°—-3z+2= L o 2-3zx+1=0 &

3++5
2

T = — 1~038 262 C.Nosymmetry D. lim f(z)= lirgl)r f(x) = —oc0.s0x = 1and
r—1" T—

2z — 3 2(x —3/2
z = 2are VAs. NoHA. E. f'(z) = p f3w+2 = @ (fl)(x/—)2)'so f'(z) < 0forz < 1and f'(z) >0
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for x> 2. Thus, f is decreasing on (—oo, 1) and increasing on (2,00). F. No extreme values
2 22
" _ € _313"‘2)'2_(217_5) H y : ix=2
G. f (37) - (xQ _3$+2)2 ) i
2 -6z +4—4x?4+120-9 \
B (2 — 3z + 2)2 !

_ —2z% + 62 -5 0
o (LEQ — 3z + 2)2 —14

The numerator is negative for all z and the denominator is positive, a1

so f(x) < 0 for all z in the domain of f. Thus. f is CD on X

(—00.1) and (2, 00) . No IP

41. y = f(z) = In(sinz)

A. D=A{zinR|sinz>0} = (J (2nm, (2n+1)7)

= U(=4m =3m) U (=27, —7) U (0,7) U (2, 3m)yJ---
B. No y-intercept; z-intercepts: f(z) =0 <« In(sinz) =0 & sinz=e"=1 & 2=2nr+ 5 for

eachintegern.  C. f is periodic with period 27r. D. }im " f(z) = —oo and « lim - f(z) = —00, s0
z—(2nm z—[(2n+1)w]—

the lines = n are VAs for all integers n.  E. fl(z) = Sz =cotz.so f'(z) > 0 when 2nm < z < 2n7 + 3
for each integer n, and f'(z) < 0 when 2n7 + 7 <z < (2n+ 1)7. Thus, fis increasing on (2nm, 2nm + Z) and

decreasing on (2n7 + %, (2n + 1)7) for each integer n. F. Local maximum values f(2nm + Z) = 0. no local

minimum.  G. f”(z) = —csc?z < 0.s0 f is CD on (2n7, (2n + 1)) for each integer n. No IP

8. y=f(z)==z(nz)> A D= (0,00) B. z-intercept = 1. no y-intercept  C. No symmetry

2
D. lim z(Inz)?® = co. lim z(Inz)?> = lim (Inz)” L lim 2nz)(1/z) = lim Znz 4
T —00 z—0+ z—0+ 1/x z—0t+t  —1/x2 a0+ —1/z

< z=1landwhenlnz = -2 & z=¢2 f’(x)>Owhen0<z<e_2andwhenm>l.so

[ is increasing on (0, e~2) and (1, 00) and decreasing on (72, 1) .
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F. Local maximum value f(e_2) =4e7?,
local minimum value f(1) =0

G. f"(z) =2(Inz)(1/z) +2/z = (2/z)(Inz + 1) =0

whenlnz=-1 & z=e€' f'(z)>0 &

x> 1/e,so fis CUon (1/e.o0).CDon (0. 1/e).

[Pat(1/e 1/e)

9. y=f(z) = re > A. D=R B. Interceptsare 0 C. f(—z) = —f(x). so the curve is symmetric

.. . —z2 T H .
about the origin. D. lim ze™ = lim — = lim
T—+oo r—too e z—toco 21e®

> =0,s0y = 0isaHA.
E. fl(z)=e"" 2 _9p2e = e (1- 22%) >0 & P?<3 & |z1< 5 SOflS increasing on
(—%* %) and decreasing on ( 00, \/—) and (\/5 oo> . F. Local maximum value f(%) = 1/4/2e, local

minimum value f(-—) =-1A2e G. f'(z) = — 2z (1-22%) - dge=®" = 2ze™™ (22> —3) >0

& x>\/>or f<a:<050f13CU0n(ﬁ,oo) H. ”(
and (—\/g,o) and CD on (—oo,—\/_) and (o \/g)

G

=

IP are (0. 0) and (i\/g +\/3e792).

50. y = f(z) =€ —3e *—4z A D= R B. y-intercept = —2; z-intercept =~ 2.22 C. No symmetry

. z . e’ e ” e* u ..
D. lim (e’” —3e % — 43:) = lim z{ — —3 -4 , since hm = lim — = oo0.

Similarly. lim (e” —3e™" — 4z) = —oo. No HA; no VA

E. f’(z):e’”—l—Se"‘——4:e‘“’(e2z—4ez+3)=e_z(ex—3)(e”3—1)>0 & >3 <1l &

z>1In3orz < 0. So f is increasing on (—00, 0) and (In 3, oo) and H. y

decreasing on (0,In3). F. Local maximum value f(0) = —2.

local minimum value f(In3) =2 —41n3 0 x
-2

G. f(x)=¢€"—3e " = e (e -3)>0 « e >3 &
x> +In3.50 fisCUon (1n3,00) and CD on (—oo.%ln3).

IPat (11n3.—21In3).



51. y = f(z) = ¥ + e *°

no z-intercept C. No symmetry D. No asymptotes

E. f'(z) = 3% — 272

sofl(x)>0 & 3 >2%
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A. D=R B. y-intercept= f(0) = 2: H. y

[multiply by e**] & €>*>2 & b5z > n? & / ‘\
local 0.2)
z>1In2~ —0.081 Similarly. f'(z) <0 & z< ini. minimum
2 0 x

f is decreasing on (—co, £ In 2) and increasing on (3 In 2, 00).

3

F. Local minimum value f(é In %) = (%)3/5 + (%) RARY 1.96: no local maximum.

G. f'(x) =9e3 +4e7>" s0 f"(z) > 0forall z.and f is CU on (—00, 00). No IP

1

52. y = f(z) = tan_1<z—;1> A.D={z|z#-1}

B. z-intercept = 1, y-intercept = f(0) = tan™'(—1) = —% C. No symmetry

r—too

. ifz—-1
lim tan
r——1+ z+1

-1
D. lim tan_1<x—
T

1—-1/:
): lim tan_1< /t> =tan l1=12
+1

=T and lim tan”! z-1) _ T H y
- 2 r——1" JJ+1 - 2 :

.soy = T isaHA. Also

(z+1) - (z-1) _— 2 »=3

E f(z) =

1+ [(z - 1)/(x+1)? (x+1)2 L0
2

1 A

= = 0
@t12+(@-12 z22+1° /._’_'

so f is increasing on (—oo, —1) and (—1,00). F. No extreme values

G. f'(z)=—2z/(«*+1)>>0 & z<0.50fisCUon (—co,—1)and (—1,0), and CD on (0, 00).
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IPat (0.-%)
w . WL , WIL?* , W 5 5 2
. = — —_ = ———71“ —_ Yy
By = 55 t Er® ~ upi® sapr® (¢ —2Le+L7) [

_ -W 2 2 _ 2 2 +
—24E1x(x—~L) =cz’(z — L) 0 LR x
h = - i < .

where ¢ SABT 1S a negative constant and 0 < z < L. We sketch

f(@) =cz®(x — L) forc = —1. f(0) = f(L) = 0.

f'(z) = cx®[2(z — L)) + (z — L)?(2cz) = 2ca(z — L) [z + (z — L)] = 2cz(z — L)(2z — L). So for

0<z<L f(z)>0 & z(z—L)(2x—L)<0(sincec<0) <« Li2<z<Land f'(z) <0 &

0 <z < L/2.So fis increasing on (L/2. L) and decreasing on (0, L/2). and there is a local and absolute
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minimum at (L/2, f(L/2)) = (L/2,cL*/16).
f'(z) = 2¢[z(z — L)(2z — L)] =

f(z) = 2c[1(z - L)(2z — L) + 2(1)(2x — L) + z(x — L)(2)] = 2c(62®> — 6Lz + L?) =0 <«

6L ++/12L2
z = — 1 = %L + %L, and these are the z-coordinates of the two inflection points.
k k
5. F(r) = —— + ———=.,wherek >0and0 < 2 < 2. For0 < & < 2, Y
22" (-2
2k 2k F
z—2<0,s0 F'(z) = = — ——— > 0and F is increasing.
o (z-2)
lim+ F(z) = —ocand lim F(z)= oco,soxz = 0and x = 2 are vertical 5 ;
z—0 z—2~

asymptotes. Notice that when the middle particle is at z = 1, the net force

acting on it is 0. When x > 1, the net force is positive. meaning that it acts to

the right. And if the particle approaches = 2. the force on it rapidly
becomes very large. When = < 1, the net force is negative. so it acts to the

left. If the particle approaches 0, the force becomes very large to the left.

2 +1

85 y = a1 Long division gives us: z—1
z+1| 2? +1
4z
—z+1
—z—1
2
2
9 2
o+ 1 2 2 z
= = =zx—1 d —(z—-1)= = forxz #0
Thus.y = (@) = S5 =2 = 1+ g and f(o) ~ (0= 1) = oo = 7 lore 20
T
as z — F00. So the line y = z — 1 is a slant asymptote (SA).
3 2
%.y:gx——}_:—_'_-;iﬁ. Long division gives us: 2z -3
T x
x2+2x[2x3+ 2+ z+3
2z% + 42°
— 3224+ =z
— 322 — 6z
Tr+ 3
7
3 2 L
3 Tz +3 Tx+3
Thus.y:f(ac):Qw—_’_x—_i_i:2x—3+—x—andf(m)—(2mf3): =z

z2 + 2z z2 + 2z

[forz # 0] — Oasx — Foo. Sotheliney = 2x — 3is a SA.



58.

59.
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4z% — 222 + 5 .
Y= Long division gives us:
y 2z +1—3 g &
2r — 2
2z% + x — 3|4x® — 227 +5
473 + 222 — 6z
— 42 + 6245
—42% - 2x 46
8 —1
T _f()_4x3—2m2+5_2 _g4 Sz —1 .
usy =i 22+ -3 2z2 4+ -3
8 1
8z — 1 i | .
f(w)—(2$~2):22 3= 5 [forz#0] — 0asz — Foo. Sotheliney = 2z — 2is
e+ T — 24+ = =
T T
a SA.
—m Long division gives us:
vy= T3 -2 42 g J >
5c+ 5
z3 — 2% + 2|5z* + 224+ =z
5zt — 5z® + 10z
52° + 2% — 9z
523 — B’ +10
6z — 9z — 10
Thus.y = f(z) = 2t T 4T _ o g 6220010
Y 3 —z24+2 3 — 2242
) 6 9 10
6z -9z —-10 .~ 2 3
f(z) — (52 +5) = R 2 53— lforz #0] — 0asz — too. Sotheliney = 5z +5
)
r z3
isa SA.
—2z2% 4 5z — 1 1
y:f(m):T:—:c+2+—2m*1 A-D={zeR|z#3}=(-00,%)U (3 )
B. y-intercept: f(0) = 1; z-intercepts: f(z) =0 = —222+5z2—-1=0 = z::5i4" 17

T ~0.22,2.28. C. No symmetry

z—(1/2)~ f(@) oo an z_’(llr?zﬁ f(z) = co.s0x = 5 isa VA.

. . 1
lim [f(z) —(—z+2)]= lim 7= 0,sotheliney = —x 4+ 2is a SA.

T—Fo0 z—+oo 21 —
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60.

61.

2
E. fl(z)=—-1- 5 < Oforz # . so f is decreasing

(2z-1)
on (—oco. 3) and (3,00). F. No extreme values

G fllz)=-1-222z-1)"% =

f(z) = -2(-2)2z - 1)7%(2) = .50 f"(z) > 0 when

(2z —1)3

x> 5 and f’(x) < 0 whenz < 1. Thus, fis CUon (1, 00) and CD
on (=00, ). NoIP
2’ +12 16

y=f(z) = — —$+2+m A . D={zeR|z+#2} =(-00,2)U(2,00)

B. y-intercept: f(0) = —6: no z-intercepts. C. Nosymmetry D. lim f(z) = —ocand lim f(z) = oo,

T—2~ r—2

soz =2isaVA. lilll [fz)=(z+2)] = lim 62 =0, so the line y = x + 2 is a slant asymptote.

x—Foo x—Ftoo L —

E f'(z)=1- 16 2’4z -12  (z2-6)(z+2)
(z—2)° (z - 2)* (z —2)°

.80 f'(z) > Owhenz < —2 or z > 6 and

f'(z) <0when —2 <z < 2o0r2 < x < 6. Thus, f is increasing on (—oo, —2) and (6. co0) and decreasing on
(—2,2) and (2,6).

F. Local maximum value f(—2) = —4,
local minimum value f(6) = 12

32
(z —2)°

z > 2and f’(z) < 0forz < 2. fis CUon (2, 00) and CD

G. f'(z)=16(-2)(z —2)"° = ,so f"(z) > 0 for

on (—00,2). NoIP

y=f(z)= (2> +4)/z=z+4/z A. D={z|z#0}=(-00,0)U(0,00) B. Nointercept
C. f(—z) = —f(z) = symmetry about the origin D. lim (z +4/x) = cobut f(z) —z =4/z — 0as

x — £00,50y = x is a slant asymptote. lim+ (z 4+ 4/z) = oo and H. M@ 4
z—0 '/ /’
lim (z+4/z) = —co,soxz =0 isaVA. E. fl(z)=1-4/2°> >0 SV
z—0~
i 0 X

o 22>4 & z>2o0rx < —2 50 fisincreasing on (—oo, —2)

and (2, 0o) and decreasing on (—2,0) and (0, 2).

F. Local maximum value f(—2) = —4, local minimum value f(2) = 4
G. f'(z)=8/2* >0 <« =z >0so fisCUon (0,00)and CD

on (—o00,0). NoIP



62.

64.

.y = f(z) =
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y=f(z)=e"—z A. D=R B. No z-intercept; y-intercept = 1 C. No symmetry

x T x
D. lim (e° —z)=oc. lim (e* —z) = lim w(e— - 1) — cosince lim &= & lim & = oo,
z

r— —0o0 Tr— 00 r—00 r—00 I Tr— o0 1
y = —z is a slant asymptote since (e® — ) — (—z) = * — O as H. .
z— —o00. E fliz)=e"-1>0 & " >1 & z>0.

so f is increasing on (0, o) and decreasing on (—00,0) .

F. f(0) = 1 is alocal and absolute minimum value.
G. f"(z) =€e® > Oforall z,so f isCUonR. NolIP
_ 2z + 2 + 1 —2z

=2 1
2 +1 Tt +m2+1

A. D =R B. y-intercept: f(0) = 1; z-intercept: f(z) =0
= 0=2"42"+1=(z+1)(2e* ~2+1) = z=-1 C.Nosymmetry D. NoVA

lim [f(z)— Qo+1)) = lim —2% — lim —HT_

Jim Jm T = lm - Y = 0, so the line y = 2z + 1 is a slant asymptote.

2’ +1)(-2) — (—2z)(2z) _ 2(z* +22° +1) — 22° — 2 4 4z’
(22 + 1)2 - (wz + 1)2
2z 4627 22°(2° +3)

(e +1)2 0 (a2 +1)2

E. fl(z) =2+ (

so f'(z) > 0if z # 0. Thus, f is increasing on (—oo, 0) and (0, 00). Since f is continuous at 0, f is increasing
onRR. F. No extreme values

(z® + 1) - (82° + 12z) — (2z* + 62%) - 2(z® + 1)(2z)

G. f(z) = (22 + 1)2]2 H.
_ 4z(2? + 1)[(2? + 1)(22* 4 3) — 2z* — 627]
@2+ 1)
_ dx(—2® +3)
CERSIE

so f"(z) > 0forz < —/3and 0 < z < /3. and f'(z) < 0 for
—V3<z<Oandz > V3. fis CUon (—oco, —v/3) and (0,v/3).

and CD on (—+/3,0) and (v/3,00). There are three IPs: (0,1). (/3. —2v/3 + 1) ~ (—1.73,-1.60). and
(vV3,2v3 +1) = (1.73.3.60).
(z+1)°® 2+32°+3z+1 122 — 4

y:f(x):(mfl)QZ 2 -2z +1 I+5+(z—1)2

A.D={zeR|z#1}=(-00,1)U(l,00) B. y-intercept: f(0) =1,

z-intercept: f(z) =0 = =z = -1 C. Nosymmetry D. lim1 f(z) =o00,s0z = 1isa VA.

12 4

. . 122 — 4 . 2 . .
Mp V) - e O] =t e L, T T = Osoteliey =z 4 5isasa
T x2
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65.

66.

E ['(z) = (z—1)%-3(x+1)>?—(z+1)% 2z —1)

-1 - |
_@E-DE+)Ba-1)-2Ae+1)]  (@+1)*-5) 2ot
(z—1)* (-1
so f'(z) >0whenz < -1, -1 <z < 1 orz > 5,and f'(z) <0 107

when 1 < x < 5. f is increasing on (—o0, 1) and (5, co) and ey

decreasing on (1, 5).

F. Local minimum value f(5) = 2% = 27 no local maximum

(x—1)%[(x - 1)> + (z—5) - 2(z+1)] - (z+1)3(z — 5) - 3(z — 1)?

G. f'(z) =
re @ P
_ @@=+ ) {-D[(z+1)+2(z—5)] - 3(z+ 1)(z - 5)}
(z—1)8
_ (z+1){(z-1)Bz - 9] -3(z® -4z —5)} (x4 1)(24)
(z—1)* - (-1

so f(z) >0if —1 <z <lorz>1 and f’(z) < 0ifz < —1. Thus, fis CUon (—1,1) and (1, c0) and CD
on (—oo, —1). IP at (—1,0)

1 1+2°-1  2°

— — -1 —
y=fz)=z—tan m.f’(m)—1—1+$2— 1+22  1+22

g (1+2%)(2z) —2%(22)  2z(1+2°—2°) 2z
@) = (1+=22)? T (I+22)?2 (1 +x?)?

3 jus — | LI -1 = _T — S = —Zj
xh_)n;o[f(m)—(x—ﬁ] zll»n;o(z tan"'z) =% —Z =0.s0y =z — 5 isaSA. Also,

lim [f(z) - (z+%)] = lim (-% —tan"'z) y

r— — 00 r——00

—-5-(-5) - -

soy =z + I isalsoaSA. f'(z) > 0 for all z, with equality <

x = 0. so f is increasing on R. f”(z) has the same sign as x, so f is CD 0
on (—00,0) and CU on (0, 00). f(—z) = —f(x). so f is an odd function; ‘ -
its graph is symmetric about the origin. f has no local extreme values. Its
only IP is at (0, 0).

y=f(z) =vz2 t4z =/z(z+4). z(z+4)>0 & z< —-4orz>0,50D = (—00,—4]U|0,00).
y-intercept: f(0) = 0; z-intercepts: f(z) =0 = z=—4,0.

VPt dzF(z+2) VIR Hdrt(z+2) _ (P +4e) - (¥ +4z+4)

/22 1+ 4 2) = =

4z F (@+2) 1 Va? t Az £ (z 1 2) Va2 + 4z £ (z + 2)
B 4
C Vz?+dz+ (z+2)

) lir;l [f(z) F (z + 2)] = 0. Thus, the graph of f approaches the slant asymptote y = = + 2 as £ — oo and it



67.

69.
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T+2

R / _
approaches the slant asymptote y = —(x +2) as ¢ — —oo. f'(z) = N so f'(z) < Oforz < —4
and f'(z) > 0 for z > 0; that is. f is decreasing on (—o0, —4) and y
increasing on (0, 00). There are no local extreme values. \
fl@) = (z+2)(z® +42)7* =
f(z) = (z+2) (~3) @ +42)"°% - 2z +4) + (2 +4z) 7'/ 0 >
= (2 +42) " [~(2 +2)° + (2 + )] T,
= —4(:1:2 + 495)_3/2 <0onD /,/’Iﬁ// \9
so f is CD on (—oo, —4) and (0, c0). No IP
2y b 5
VL oy 22T Now
a?  b? a
VT2 — a2 2
oot b, %y,

, b b | b SR
zllngo{—\/m2_a2_—a;}_E-IIBEO(\/m —a —w)m+z a oo \/22 _ a2 4z

a a

b o
which shows that y = P is a slant asymptote. Similarly,

b b b —a’ b .
i 2 g2 -2 lim —_—_—— -2
zlgr;o [ . vVz?—a ( ax)} =3 xlgrolo N i 0.s0y prd is a slant asymptote.
3 3 3
- 1
. flz) —2® = vl z? = rloa 1 and lim — = 0. Therefore. lim [f(z) — 2] =0.and so
T x x z—too T T—+oo

the graph of f is asymptotic to that of y = 2. For purposes of differentiation, we will use f(z) = z° + 1/z.
A. D= {z |z #0} B. Noy-intercept; to find the z-intercept, wesety =0 < =z = —1.

3 3

1 1

C. Nosymmetry D. lim r =ooand lim Z 1
z—0t T z—0- T

—00, H.

so x = ( is a vertical asymptote. Also. the graph is asymptotic to the

parabola y = z?, as shown above. E. f'(z)=2z—1/22>0 <

z > % so f is increasing on (%, oo) and decreasing on (—o0, 0) and

(O, 3%/5) . F. Local minimum value f(—%) = SJZ@ no local maximum

G f'(x)=2+2/x*>0 o z<—lorz>0.s0fisCUon
(=00, —1) and (0, 00). and CD on (—1,0). IPat (—1,0)

4 4
. . +1 =z 1
| — 28 = 1 z _— = 1 - = 1 1 — 3
Jim [f(z) x ] ,im - - IEIj’I:lOO - 0. so the graph of f is asymptotic to that of y = z°.

A. D={z |z #0} B. Nointercept C. fissymmetric about the origin. D. lim <x3 + l) = —oo and
z

z—0~

. 1 . .
llIgl+ <m3 + ;) = 00, s0 x = 0 is a vertical asymptote. and as shown above, the graph of f is asymptotic to
z—
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thatofy =z E. fl(z) =322 -1/2>>0 < z'> i e

|z| > % so f is increasing on (—oo~—%) and (%oo) and

decreasing on (—%, 0) and (0, %) . F. Local maximum value

1) 4. q-5/4 s 1\ _ 4. -
f( %>— 4-3 ,localmlnlmumvaluef(q\/—g—)—4‘3 5/4

G. f"(z)=6z+2/z° >0 & z>0,50 fisCUon (0,00) and
CD on (—o00,0). No IP

70. lim [f(z)— cos x| = N lirzltx 1/z* = 0, so the graph of f is

z—+oo

asymptotic to that of cos z. The intercepts can only be found

approximately. f(z) = f(—zx), so f is even. Iin}) (cosm + %) = 00, 80
z— T

= = 01is a vertical asymptote. We don’t need to calculate the derivatives,

since we know the asymptotic behavior of the curve.

4.6 Graphing with Calculus and Calculators

1. f(z) = 42* — 322° +892% —95x +29 = f'(z) = 162> — 962> + 178z — 95 =
f(z) = 482% — 1922+ 178. f(z) =0 < z~05, 1.60; f(z)=0 < x~092 2.5 2.58and
f'(z)=0 <& x=~146, 254

10 10 1.0 4.04
f f I
0 \/ 4 f
L J ' J A | ), . . .
—6 -2 -0.2 3.96

From the graphs of f’. we estimate that f < 0 and that f is decreasing on (—oc0, 0.92) and (2.5, 2.58). and that
f' > 0and f is increasing on (0.92,2.5) and (2.58, 0o) with local minimum values f(0.92) ~ —5.12 and
£(2.58) ~ 3.998 and local maximum value f(2.5) = 4. The graphs of f’ make it clear that f has a maximum and a

minimum near x = 2.5, shown more clearly in the fourth graph.

From the graph of f”/, we estimate that f > 0 and that f is CU 50
on (—o0, 1.46) and (2.54, 00), and that f” < 0 and f is CD on \ / f
Ot NN J4

(1.46, 2.54). There are inflection points at about (1.46, —1.40) and

(2.54,3.999).

—20
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2. f(z) =2° — 152° + 752" —1252° —z =
f'(z) = 62° — T5z* + 300z® — 3752 —1 = f"(z) = 30z* — 300z® + 9002 — 750z
f(z)=0 & z=0o0rz=533 [f(r)=0 & z=2.50,4.95 o0r5.05;
f'(z)=0 & z=0,50rz~1.383.62.

250 500 1

IN\vae

-250 —500 =20

500

£

A
EVARVE

—200

2

4{

-2

From the graphs of f’, we estimate that f is decreasing on (—o0, 2.50). increasing on (2.50,4.95), decreasing on
(4.95, 5.05), and increasing on (5.05, co), with local minimum values f(2.50) ~ —246.6 and f(5.05) ~ —5.03,
and local maximum value f(4.95) ~ —4.965 (notice the second graph of f ). From the graph of f”’, we estimate

that f is CU on (—o0, 0), CD on (0, 1.38), CU on (1.38, 3.62), CD on (3.62, 5), and CU on (5, 00). There are
inflection points at (0, 0) and (5, —5), and at about (1.38, —126.38) and (3.62, —128.62).

L L1 2z —3 " 2 8 —3z+24
3 f(z)=vV22-3z-5 = f(z)—gm = f(w):—g—(x2_3x_5)5/3

3 3 3
NN ()
7 O |
2 -3 -3
2 —
Note: With some CAS’s. including Maple, it is necessary to define f(z) = ﬁ;%;— ]x2 -3z — 5| /3
z? — 3z —

since the CAS does not compute real cube roots of negative numbers. We estimate from the graph of f’ that f is
increasing on (1.5, c0), and decreasing on (—c0, 1.5). f has no maximum. Minimum value: f(1.5) ~ —1.9.

From the graph of f”, we estimate that f is CU on (—1.2,4.2) and CD on (—o0, —1.2) and (4.2, 00). IP at
(—1.2,0) and (4.2,0).
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4 3 2
¥+’ —22° +2 5 4323 — 442 _
(2 +z—2)
6 5 4 3 2
ey o +3x° —3x" — 11lx° + 122° + 18z — 2
(@) =2 -

(z2 4z —2)

[SRISRE
|
)\g/r / (. ’:’: [
VN T

-8 -5

[
(=]

AN .
N

We estimate from the graph of f' that f is increasing on (—2.4, —2), (=2, —1.5) and (1.5, 00) and decreasing

on (—oo, —2.4). (—1.5,1) and (1, 1.5). Local maximum value: f(—1.5) ~ 0.7.

Local minimum values: f(—2.4) =~ 7.2, f(1.5) = 3.4. From the graph of f”. we estimate that f is CU on

(—00,-2),(—1.1,0.1) and (1,00) and CD on (—2, —1.1) and (0.1, 1).

f hasIPat(—1.1,0.2) and (0.1, —1.1).
x

5. f(z) = ————— = fl(2)=

3 —x2 —4r+1

223 + 22 +1
(z3 — 22 — 4z +1)°

2(32° — 32" + 5z° — 62 + 3z + 4)
(23 — 22 — 4z +1)°

f//(x) —

3 3 3

A A

-3 -3 -3

We estimate from the graph of f that y = 0 is a horizontal asymptote, and that there are vertical asymptotes at

z = —1.7. ¢ = 0.24, and = = 2.46. From the graph of f’, we estimate that f is increasing on (—oo, —1.7).
(—1.7,0.24). and (0.24, 1), and that f is decreasing on (1,2.46) and (2.46, 00). There is a local maximum value
at f(1) = —31. From the graph of f". we estimate that f is CU on (—o0, —1.7). (—0.506,0.24), and (2.46, c0).

and that f is CD on (—1.7, —0.506) and (0.24, 2.46). There is an inflection point at (—0.506, —0.192).
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6. f(z) =tanz +5cosx = f'(z) =sec’z —Hsinz = f"(z) = 2sec®z tanz — 5 cos z. Since f

is periodic with period 27, and defined for all = except odd multiples of 5. we graph f and its derivatives

NI L A,

‘1 ~ T 7 2 VA Jz

-12 —-12 —-12

=]
=
|
(SIE]

We estimate from the graph of f that f is increasing on (—Z%.0.21). (1.07, ). (3,2.07). and (2.93, 3F).
and decreasing on (0.21,1.07) and (2.07,2.93). Local minimum values: f(1.07) =~ 4.23, f (2.93) =~ —5.10.
Local maximum values: f(0.21) = 5.10, f(2.07) =~ —4.23.

From the graph of f”, we estimate that f is CU on (0.76, %) and (2.38, %F). and CD on (—%,0.76) and

(%,2.38). f hasIP at (0.76,4.57) and (2.38. —4.57).

1. f(zx)=2> -4z +Tcosz, —4<zx <4 f'(z)=2c—-4-Tsint = f'(x)=2—"Tcosz.
fz)=0 & z~110;f(x)=0 & z~-149 —-1.07.0r2.89; f'(z) =0 <«

x=tcos ' (2) ~ £1.28.

30 10 0.5

/]
/

-5

From the graphs of f’. we estimate that f is decreasing (f' < 0) on (—4, —1.49), increasing on (—1.49, —1.07).
decreasing on (—1.07, 2.89), and increasing on (2.89, 4). with local minimum values f(—1.49) ~ 8.75 and

f(2.89) ~ —9.99 and local maximum value f(—1.07) ~ 8.79 (notice the second graph of f). From the graph
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of ", we estimate that f is CU (f > 0) on (—4, —1.28). CD on (—1.28, 1.28), and CU on (1.28, 4). There are
inflection points at about (—1.28,8.77) and (1.28, —1.48).

T

8 flo)=5— = fla)=

e“(z? -2z -9 , e*(z* — 42® — 1202 + 36z + 99
o Sl B9 L prey = ST 120 4 560+ 9

(2> - 9)* (2? - 9)°

There are vertical asymptotes at z = 3. It is difficult to show all the pertinent features in one viewing rectangle, so

we’ll show f. f', and f” for z < 3 and also for z > 3.

0.5 0.5 0.5
Forz < 3: —4 3 -4 3 -4 l
-0.5 -0.5 -0.5
15 15 15

7 / J7

3L 3| J7

-5 -5 -5

We estimate from the graphs of f’ and f that f is increasing on (—oo, —3), (—3, —2.16), and (4.16, co) and
decreasing on (—2.16, 3) and (3, 4.16). There is a local maximum value of f(—2.16) ~ —0.03 and a local
minimum value of f(4.16) ~ 7.71. From the graphs of f”, we see that f is CU on (—oo, —3) and (3, c0) and
CD on (—3, 3). There is no inflection point.
9. f(z)=82% -3z -10 = f'(z)=242> -6z = f'(z)=482—6
40 20 -9.7

f
( A ! f
-15 2 T

I }
-1k

~ 1 —-03 0.5
—40 -1 —-10.5

From the graphs, it appears that f(z) = 82> — 3z — 10 increases on (—oo,0) and (0.25, co) and decreases on
(0,0.25); that f has a local maximum value of f(0) = —10.0 and a local minimum value of f(0.25) ~ —10.1: that
fis CU on (0.1, 00) and CD on (—o0,0.1); and that f has an IP at (0.1, —10). To find the exact values. note that
f'(z) = 24z* — 6z = 6z(4x — 1), which is positive (f is increasing) for (oo, 0) and (7, 00). and negative

(f is decreasing) on (0, ;). By the FDT. f has a local maximum at z = 0: f(0) = —10; and f has a local



10.

1.
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minimumat 3: f(3) = § — & - 10 = — 1% f"(z) = 48z — 6 = 6(8z — 1). which is positive (f is CU) on

(L.00) and negative (f is CD) on (—oo, §). f has an [P at (2.f(%)=(G.-%%)

- f
-20 ¢ + 15

20
—6 0

From the graphs, it appears that f increases on (0, 3.6) and decreases on (—co, 0) and (3.6, c0); that f has a local
maximum of f(3.6) ~ 2.5 and no local minima; that f is CU on (5.5, 00) and CD on (—co0, 0) and (0, 5.5); and

2411220 11 20
that f has an IP at (5.5,2.3). f(z) = ﬁ?@— —1+=-3

f'(z) = 11272 + 4022 = —z~3(11z — 40), which is positive (f is increasing) on (0, 42). and negative

00). By the FDT. f has a local maximum at z = $9:

(f is decreasing) on (—c0,0) and on (12 e

11°

11(42) -2 11-40 — 20 -
(1) = G ) +(40§ ) 20 _ 1+ 112030 20121 _ %:andfhas no local minimum.

11

Fl(z) = —112"2 + 402~2 = f"(z) =22¢~% — 1200~ = 22~4(11z — 60). which is positive (f is CU) on
0

(89, 00). and negative (f is CD) on (—00,0) and (0, %2). f hasanIPat (£, f(£2)) = (82, 24)

From the graph, it appears that f increases on (—2.1,2.1) and decreases 4.6
on (—3,—2.1) and (2.1, 3); that f has a local maximum of f(2.1) =~ 4.5 l ]
and a local minimum of f(—2.1) & —4.5; that f is CU on (—3.0,0) and ~3 31
CDon (0, 3.0), and that f has an IP at (0,0). f(z) =zvV9—22 = L J
2 2
, —T 9 -2z S . _

z) = ————= + V9 — 22 = ———==. which is positive 46

T0=r—= Vo P

(f is increasing) on (_—32‘—/—5, 12@) and negative (f is decreasing) on (—3‘ %é) and (342@ 3). By the FDT.

f has a local maximum value of f<3 ‘/_) = %5, /9 — (3 ‘/_) ;and f has a local minimum value of

2

f(_32 2) = —2 (since f is an odd function). f'(z) = \/% +vV9-22 =

V9 —2? (—2z) +2%(3) (9 - 12)_1/2(—2.1:)
9 —x2
-3z x> _ z(22” - 27)

CVO—22 (9-a2)32 T (9 42)32
which is positive (f is CU) on (-3, 0) and negative (f is CD) on (0, 3). f has an IP at (0, 0).

—29:—m3(9~r2)‘1 —x

2\ —1/2
—e0-) = N

f”(l‘) —
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12. From the graph, it appears that f increases on (—5.2, —1.0) and (1.0, 5.2) 13

and decreases on (—27, —5.2), (—1.0,1.0), and (5.2, 2); that f has local [ /\[
-63

maximum values of f(—1.0) ~ 0.7 and f(5.2) =~ 7.0 and local minimum 3 —] 63
values of f(—5.2) ~ —7.0 and f(1.0) ~ —0.7; that f is CU on L/ L J
(=27, —3.1) and (0,3.1) and CD on (—3.1,0) and (3.1, 27). and that f -5

has IP at (0,0), (—3.1,—3.1) and (3.1,3.1). f(z) =z —2sinz =
f'(z) =1 - 2cosz, which is positive (f is increasing) when cosz < 3. that is, on (=5, —%) and (%, 3F).
and negative (f is decreasing) on (—2, ~%") (—% %) and (%", 2r). By the FDT, f has local maximum values

of f(—%) =% +V3and (&) = 5 + /3, and local minimum values of f(—5F) = -2 — /3 and

(%)

(0, ) and negative (f is CD) on (—=,0) and (m,27). f hasIP at (0,0), (—, —7) and (7, 7).
13. (a) f(z) = 2% In z. The domain of fis (0,00).

—Z—V3. f(zx)=1—2cosz = f"(z) = 2sinz, which is positive (f is CU) on (=27, —7) and

175
-0.25
. Inz u .. 1/z . z? .
i 2 = — = — =1 —— ] =0.Th hole at (0, 0).
® iy, iz = g, 375 2 i, <l = iy (%) = 0. Theisabokes 0.0

(c) It appears that there is an IP at about (0.2, —0.06) and a local minimum at (0.6, —0.18). f(z) = z°lnz =
f'(z) =2*(1/z) + (Inz)(2z) = z(2lnz+1) >0 & hz>-1 & z> e~1/2 so f is increasing on
(1/+/e, 00), decreasing on (0,1/+/€ ). By the FDT, f(1/y/e) = —1/(2e) is a local minimum value. This point
is approximately (0.6065, —0.1839), which agrees with our estimate.

f'(z) =z(2/z) + Qlnz+1) =2z +3>0 & Ilnz>-2 & z>e 2 s0fisCUon

(6_3/2700) and CD on (076—3/2), wis (%2, _3/(263)) ~ (0.2231, —0.0747).

14. (a) f(z) = xe!/®. The domain of f is (—oo,0) U (0, 00). 4
-2 3
-15
(b) ﬂéﬂ zel/® = zllrgl+ %— 4 Ili%iJr i/z_(l/i# = xl_i'110’1+ e'/® = 0o, s0x = 0isa VA.
Also lim ze'/? =0since1/z —» —00 = €'/® =0

z—0~
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(c) It appears that there is a local minimum at (1, 2.7). There are no IP and f is CD on (—00, 0) and CU on (0, 00).

1 1
f(z) =z’ = f'(m):acel/’<—%)+el/x:61/”<1——>>O = ;<1 o z<O0or

Z

x> 1, so f is increasing on (—o0, 0) and (1, 00). and decreasing on (0, 1). By the FDT, f(1) = e s a local

minimum value, which agrees with our estimate.

F(z) = e*(1/a%) + (1 — 1/z)eV/* (~1/2?) = (61/1/x2)(1 C1+1/z) =€/t >0 & x>0,

so f is CU on (0, 0o) and CD on (—o0,0). No IP.

15.

(z +4)(z — 3)?

f(z) = prYp—Y has VA at z = 0 and at = 1 since
lir% f(z) = —oo. lim f(z) = —oo and linl'x f(z) = o0.
T— r—1— r—
r+4 (z-3)°

z 72 [dividing numerator and
f@) = —F—" . 3

x denominator by z°]

x

_ 2
= (1+4/2)(1 - 3/2) — 0asz — oo, so f is asymptotic
z(x — 1)

to the z-axis. Since f is undefined at z = 0, it has no y-intercept. f(z) =0 = (z+4)(z-3)*=0 =

x = —4 orx = 3, so f has z-intercepts —4 and 3. Note, however, that the graph of f is only tangent to the z-axis

and does not cross it at z = 3, since f is positive as z — 3~ and as x — 3%,

r_/\ 1 _]( L 12 0.03

—0.04

500

~1500 23 8

From these graphs, it appears that f has three maximum values and one minimum value. The maximum values are
approximately f(—5.6) = 0.0182, f(0.82) = —281.5 and f(5.2) = 0.0145 and we know (since the graph is

tangent to the z-axis at z = 3) that the minimum value is f(3) = 0.

:

_ 10z(z —1)* _ o
f(z) = 2@t 1 has VA at z = —1 and at z = 2 since
lim1 f(z) =o0. lim f(z) = —ooand lim+ f(z) = oo.
T—— r—2~ z—2

B 10(1 — 1/x)* . .
flz) = A= 2/27( + 1z — 10 as x — 00, so f is asymptotic to

the line y = 10. f(0) = 0. so f has a y-intercept at 0. f(z) =0 =
10z(z —1)*=0 = z=0o0rz=1.So f has z-intercepts 0 and 1.




344 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

Note, however. that f does not change sign at x = 1, so the graph is tangent to the z-axis and does not cross it.

We know (since the graph is tangent to the z-axis at x = 1) that the maximum value is f(1) = 0. From the graphs it

appears that the minimum value is about f(0.2) = —0.1.
20 1
R
-0.5 [--- L5
-9 L + J 10
-5 -1
2 (z +1)° z(z+ 1) (x> + 182% — 44z — 16
17. f(il?) = (m—_m = f/(.’E) = - (:£ — 2)3(1: — 4)5 ) (from CAS)
0.0011 0.00015 5000
§ f f
-15 . 0
22 32
-30 _
— Jo | \J - J
-0.0002 ~0.0001 —2000

From the graphs of f’. it seems that the critical points which indicate extrema occur at x ~ —20, —0.3, and 2.5

as estimated in Example 3. (There is another critical point at z = —1, but the sign of f’ does not change there.)

. . . . (z +1)(z° + 362° + 62* — 628z° + 6842 4 672z + 64)
" _
We differentiate again, obtaining f"(x) = 2 @ - 2)i@ = Ay .

0.00001

72 R e |
| RV

—0.00001

From the graphs of f”'. it appears that f is CU on (—35.3, —5.0), (—1, —0.5), (—0.1,2). (2,4) and (4, c0) and CD
on (—o00, —35.3), (5.0, —1) and (—0.5, —0.1). We check back on the graphs of f to find the y-coordinates of the

inflection points. and find that these points are approximately (—35.3, —0.015). (—5.0, —0.005). (—-1,0),
(—0.5,0.00001). and (—0.1,0.0000066).
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(x —1)*5z - 1)

10z(z — 1)*
(z - 2)*z +1)3

18. f(CC) = m = f’(m) = -20

(from CAS).

1

200 N r : - } ) 2 0 , . 10
B R/any

-3

From the graphs of f’, we estimate that f is increasing on (—oco, —1) and (0.2, 1) and decreasing on (—1,0.2).

(x — 1)*(52° — 82® + 17z — 6)
(x—=2)3(x+1)*

(1,2) and (2, 00). Differentiating f'(z). we get f”(z) = 60

100 2

LA

-5 -2

From the graphs of f", it seems that f is CU on (—oo, —1.0). (—1.0,0.4) and (2.0, 00), and CD on (0.4, 2). There

is an inflection point at about (0.4, —0.06).

.2 . 2 .
sin® . , smx[2(z +1)cosm—$smm]
19. y = f(z) = ——= with0 < z < 37. Froma CAS. ¢y’ = an
y=1e) = o =7= v (@ +1)°2
0 (4z* + 62% + 5)cos® z — 4z(z2 +1)sinz cosz — 2z* — 22 — 3
a (22 +1)°/? '
0.75
f
0 37

From the graph of f’ and the formula for y’. we determine that ¢’ = 0 when & = . 27, 37, or z & 1.3, 4.6, or 7.8.
So f is increasing on (0, 1.3). (7, 4.6). and (27, 7.8). f is decreasing on (1.3, ), (4.6, 27), and (7.8, 37). Local
maximum values: f(1.3) ~ 0.6, f(4.6) ~ 0.21, and f(7.8) = 0.13. Local minimum values: f(7) = f(27) = 0.
From the graph of f”, we see thaty” =0 << =z ~0.6,2.1,3.8,5.4,7.0, or 8.6. So f is CU on (0,0.6),
(2.1,3.8), (5.4,7.0). and (8.6,3). f is CD on (0.6.2.1). (3.8,5.4). and (7.0, 8.6). There are IP at (0.6,0.25),
(2.1,0.31), (3.8,0.10), (5.4,0.11). (7.0,0.061), and (8.6, 0.065).
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2z — 1
2 f(z) = ——o = 9
f( ) 4/x4+$+1 p 7 ~
, 42 + 62+ 9 i
fl@)= ————F1 = Ny g
4(zt +z+1) ',/: fof
) = - 322° + 962 + 1522° — 482° + 6z + 21 e —~ 6
16(z* + z + 1)9/4 \ )

From the graph of f'. f appears to be decreasing on (—co, —0.94) and increasing on (—0.94, 00). There is a local
minimum value of f(—0.94) ~ —3.01. From the graph of f”, f appears to be CU on (—1.25, —0.44) and CD on
(—00,—1.25) and (—0.44, 00). There are inflection points at (—1.25, —2.87) and (—0.44, —2.14).

1/z 1/z _ o l/x 1/z 1/z
e 2e 2e7/"(1 —e'/® + 2z 4 2ze'/®)
—_——. F \ / S —————— ! =

72 rom a CAS, y 21 /o) and y A1 Fe/e) .

LA ]
i |

-1 -5

2. y=f(z)=

f is an odd function defined on (—o0, 0) U (0, 00). Its graph has no z- or y-intercepts. Since lir:tl’l f(z) = 0. the

z-axis is a HA. f'(x) > 0 for z # 0, so f is increasing on (—o0, 0) and (0, c0). It has no local extreme values.
£(z) = 0 for z ~ £0.417. s0 f is CU on (o0, —0.417). CD on (—0.417,0). CU on (0, 0.417). and CD on
(0.417, 00). f has IPs at (~0.417,0.834) and (0.417, —0.834).

1 etanz
. = = T AS' f=- d
2 Yy f((l?) 1 + etanz Froma C Y cos? x (1 + etanm)2 o
Y e *[e'*"*(2sinz cosx — 1) + 2sinz cosz + 1]

y = . f is a periodic function with period 7 that has

cos?z (1 + etanz)3
positive values throughout its domain, which consists of all real numbers except odd multiples of 7 (thatis, £7.
z
2

+37 £57 and so on). f has y-intercept 1. but no z-intercepts. We graph f, f’. and f" on one period. (-7, 5 ).

1 3

wly
(
\_4_—/
[ %]
]
Iy

Since f’(z) < 0 for all z in the domain of f, f is decreasing on the intervals between odd multiples of 7.

f"(x) = 0forz = 0 + nm and for z ~ £1.124 + nm., so f isCD on (— %, —1.124), CU on (—1.124,0), CD on
(0,1.124), and CU on (1.124, %) Since f is periodic, this behavior repeats on every interval of length 7. f has IPs
at (—1.124 + nm, 0.890), (nm, 3). and (1.124 + nx, 0.110).
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(b) Recall that a® = €®'®. lim z'/® = lim e/®™* Asz — 07,

23. (a) f(z) = zt/*® - lim, i,
: ) lnTa: — —00, 50 /% = 1/ 1= _, 0 This indicates that there is
a hole at (0, 0). As £ — oco. we have the indeterminate form o?.
0 ’ lim z'/* = lim /% but lim nz £ lim ﬂ =0, s0
l B zT—00 z—00 z—00 I z—oo 1

-l lim z!/* = €° = 1. This indicates that y = 1 is a HA.
Tr— 00
(¢) Estimated maximum: (2.72,1.45). No estimated minimum. We use logarithmic differentiation to find any

’

1 1 1 1
critical numbers. y = 2/ = Ilny=—-Inz = Y224 (lnz)<——2> =
T y Tz z

"= gt/ 1-Inz =0 = lnz=1 = z=eFor0<z<ey >0andforz>e y <O0,s0

f(e) = e/¢ is a local maximum value. This point is approximately (2.7183, 1.4447), which agrees with our

estimate.
@ o From the graph. we see that f/(z) = 0 at z = 0.58 and = ~ 4.37.
£ Since f” changes sign at these values, they are z-coordinates of
0 / J 6 inflection points.
~0.1

24. (a) f(x) = (sinz)™ 7 is continuous where sin z > 0. that s, 12
on intervals of the form (2n7, (2n + 1)7). so we have
graphed f on (0, 7).
(b) y = (sin x)Si” = Iny = sinz Insinz. so v i
. L . . Insi
lim Iny = lim sinzlnsinz = lim ——av & jimy __cotz _ lim (—sinz) =0
z—0+ z—0+ z—0+ CSCT z—0+ —CSCT cotx  z—o+

= lim y=e€"=1.
z—0t

(c) It appears that we have a local maximum at (1.57. 1) and local minima at (0.38, 0.69) and
(2.76,0.69). y = (sinz)™™® = Iny =sinz Insinz =

cos T

% = (sin x)( ) + (Insinz)cosz = cosz(1l + Insinz) = y' = (sinz)*"*(cosz)(1 + Insinz).

sinx

1

Y =0 = cosz=0orlnsint=-1 = z2=Zorsinz=e . On(0,7).sinz=e"'! =

e —1 — - — . . . .
T = sin (e 1) and z3 = 7 — sin~! (e 1). Approximating these points gives us
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(z1, f(z1)) = (0.3767,0.6922). (w2, f(z2)) ~ (1.5708,1). and (z3, f(z3)) ~ (2.7649,0.6922). The

approximations confirm our estimates.

d 1 From the graph. we see that f"/(z) = 0 at z ~ 0.94 and
x = 2.20. Since f” changes sign at these values, they are
f/l .
z-coordinates of inflection points.
0 L T
-2
25, 15
Iz
0 2w

From the graph of f(z) = sin(z + sin 3z) in the viewing rectangle [0, 7] by [—1.2, 1.2], it looks like f has two
maxima and two minima. If we calculate and graph f’(z) = [cos(z + sin 3z)] (1 + 3 cos 3z) on [0, 27],
we see that the graph of f’ appears to be almost tangent to the z-axis at about z = 0.7. The graph of

f"" = —[sin(z + sin 3z)] (1 + 3 cos 3x)? + cos(z + sin 3x)(—9 sin 3z) is even more interesting near this z-value:

it seems to just touch the z-axis.

0.1 0.002 1 12
7 N NG f '
0.58 0.7
0.58 0.7
\_/ —2m 2m
0.55 0.73
-03 —0.004 0.9997 -12

If we zoom in on this place on the graph of £, we see that f” actually does cross the axis twice near z = 0.65,
indicating a change in concavity for a very short interval. If we look at the graph of f’ on the same interval, we see
that it changes sign three times near z = 0.65, indicating that what we had thought was a broad extremum at about
x = 0.7 actually consists of three extrema (two maxima and a minimum). These maximum values are roughly
£(0.59) = 1 and f(0.68) = 1, and the minimum value is roughly f(0.64) = 0.99996. There are also a maximum
value of about f(1.96) = 1 and minimum values of about f(1.46) = 0.49 and f(2.73) = —0.51. The points of
inflection on (0, 7) are about (0.61,0.99998), (0.66,0.99998). (1.17,0.72), (1.75,0.77), and (2.28,0.34). On
(m, 27). they are about (4.01, —0.34), (4.54, —0.77). (5.11, —0.72). (5.62, —0.99998), and (5.67, —0.99998).
There are also IP at (0,0) and (7, 0). Note that the function is odd and periodic with period 2, and it is also

rotationally symmetric about all points of the form ((2n + 1), 0). n an integer.
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%. f(x) =2+ cx=z(z® +c) = fl@)=3c>+c = f'(z)=6z

21.

20 20 20

-5 5 -5 5 =5 5
—-20 -20 -20
c=—6 c=20 c=6

z-intercepts: When ¢ > 0, 0 is the only z-intercept. When ¢ < 0. the z-intercepts are 0 and +v/—c.
y-intercept = f(0) = 0. f is odd. so the graph is symmetric with respect to the origin. f”(z) < 0 for z < 0 and
f"(z) > 0forz > 0,s0 fisCDon (—o0,0) and CU on (0, 00) . The origin is the only inflection point.

If ¢ > 0, then f'(x) > 0 for all z, so f is increasing and has no local maximum or minimum.

If ¢ = 0, then f'(x) > 0 with equality at z = 0. so again f is increasing and has no local maximum or

minimum.

If ¢ < 0. then f'(z) = 3[z* — (—¢/3)] 3(x+ c/3)(wv —c/3).

so f'(z) > 0on (—oo,-— ——c/3) and ( c/3,oo) ) <0on g;‘lz
(—\/T/& \/T/?;> It follows that f( c/3) 2¢\/=c/3is 20 /4

a local maximum value and f( —c/3) = 2¢y/—c/3is alocal

minimum value. As ¢ decreases (toward more negative values). the local ’ ’
maximum and minimum move further apart.
There is no absolute maximum or minimum value. The only c= 2% -2
transitional value of c corresponding to a change in character of the graph Zii
c=

isc=0.

f(z) = z* + ca? = 2* (2 + ¢). Note that f is an even function. For ¢ > 0. the only x-intercept is the point (0, 0).
We calculate f'(z) = 42° + 2cz = 4z(2* + Lc) = f"(z) = 12¢® + 2¢. If ¢ > 0, = = O is the only critical
point and there is no inflection point. As we can see from the examples, there is no change in the basic shape of the
graph for ¢ > 0; it merely becomes steeper as c increases. For ¢ = 0. the graph is the simple curve

y = z*. For ¢ < 0, there are z-intercepts at 0 and at +v/—c. Also.

there is a maximum at (0, 0). and there are minima at

(:t, / —%c, —icz)‘ As ¢ — —00, the z-coordinates of these minima

get larger in absolute value, and the minimum points move

downward. There are inflection points at (:i: —%c - 356 ) which

also move away from the origin as ¢ — —oo0.
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28. We need only consider the function f(z) = z%v/c? — 22 for ¢ > 0. because if ¢ is replaced by —c. the function is

29.

unchanged. For ¢ = 0, the graph consists of the single point (0, 0). The domain of f is [—c, c]. and the graph of f is

symmetric about the y-axis.

-2z z3 23:(02 - xz) -z 31:(3:2 - 2c?')
() =22V — 22 + 2 —— =22/ — 22 — = =— 2
f(@) 2+/c? — x2 Ve T Vi c? —z2 2 —z2

So we see that all members of the family of curves have horizontal tangents at z = 0, since f'(0) = 0 for all ¢ > 0.

Also, the tangents to all the curves become very steep as  — =*c. since lim f'(z) = oo and
+

T——c

lim f'(z) = —oco. Weset f'(z) =0 & =z =0o0rz®>— 2¢% = 0, so the absolute maximum values

T—c 3
are f(:i: %c) = 3—\2/563.

_ (—92° +2¢%) V2 — 22 — (=32® + 2¢%z) (—z A/e® = z?) _ 6x* — 9c%z> + 2¢*

c? — z? (c2 — I2)3/2

f(z)

e 9¢? + ¢*1/33

Using the quadratic formula. we find that f"/(z) =0 < B

. Since —c < x < c. we take

_ . . . _ 9-33)(v33-3
z? = 91_\2/3—362‘ so the inflection points are <:l: g l;/ﬁc, ( 1)4(4 )c3>.

3.5
From these calculations we can see that the maxima and the points of =2
inflection get both horizontally and vertically further from the origin as c
increases. Since all of the functions have two maxima and two inflection ~\ 1 ,’E‘T 2
points, we see that the basic shape of the curve does not change as c - ." h Z “, 2
0 ¢c=1

changes.

¢ = 01is a transitional value — we get the graph of y = 1. For ¢ > 0, we see that there is a HA at y = 1. and that the
graph spreads out as c increases. At first glance there appears to be a minimum at (0, 0). but f (0) is undefined,

so there is no minimum or maximum. For ¢ < 0, we still have the HA at y = 1. but the range is (1, co) rather
than (0,1). We also havea VA atz = 0. f(z) = e/t = fl(z) = e=c/=* (—2¢/z%) =

B 20(20 — 3;1:2)

PRy f'(z) # 0and f'(z) exists for all z # 0 (and 0 is not in the domain of f), so there are no
.T e(' x

f(z)

maxima or minima. f”(z) =0 = = £4/2¢/3.s0if ¢ > 0. the inflection points spread out as c increases,



30.

3.
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and if ¢ < 0, there are no IP. For ¢ > 0, there are IP at (:E 2¢/3, e'3/2). Note that the y-coordinate of the IP is

constant.

We see that if ¢ < 0. f(z) = In(z? + c) is only defined forz* > —¢ = |z| > v/~c. and

lim f(z) =

lim  f(z) = —oo, since Iny — —oo as y — 0. Thus, for ¢ < 0, there are vertical
z—y/—ct -

@ —v/=C
asymptotes at = 2+/c, and as ¢ decreases (that is, |c| increases), the asymptotes get further apart. For ¢ = 0,

lim f(z)

z—0

—00, so there is a vertical asymptote at x = 0. If ¢ > 0, there are no asymptotes. To find the extrema

and inflection points, we differentiate: f(z) =In(z> +¢) = f'(z) (2z), so by the First Derivative

z?2+c

Test there is a local and absolute minimum at z = 0. Differentiating again. we get
1 9 2(0 — 12)
"(z) = 2+2m[— 2 +ec 2m]:—-—-.
f() .’1,‘2-{—6() ( ) ( ) (.'):2+C)2

Now if ¢ < 0, f” is always negative, so f is concave down on both of

the intervals on which it is defined. If ¢ > 0. then f” changes sign when >

2

c=z° <& ==£4/c Soforc > 0 there are inflection points at

x = £+/c, and as c increases, the inflection points get further apart.

Note that ¢ = 0 is a transitional value at which the graph consists of the z-axis. Also, we can see that if we

substitute —c for ¢, the function f(z) = 1722 will be reflected in the z-axis. so we investigate only positive
cx
values of ¢ (except ¢ = —1, as a demonstration of this reflective property). Also, f is an odd

function. lirj? f(z) = 0,50y = 0 is a horizontal asymptote for all c. We calculate
T— o0

1+ c*z?)c — cz(2c%) c(c®z® —1)

':c:( = flz)=0 & 22-1=0 < z==1/c Sothere
f(e) (1 + c2z2)? (14 c2x2)? fl) /

is an absolute maximum value of f(1/c) = 3 and an absolute minimum value of f(—1/c) = —3. These extrema

have the same value regardless of c. but the maximum points move closer to the y-axis as ¢ increases.

(—2¢%z) (1 + a?)? - (—a® + o)[2(1 + *z?) (2c%z)]

1 — 0.6

1) (1 + c2z2)* 02
B (—20393) (1 + c2x2) + (c3x2 — c) (4c21) B 2c3x(c2m2 — 3) \ - fl)iz
B (1+c2a2)° T+ —

() =0 < x=0o0r=+v3/c.so there are inflection points at (0, 0)

and at (ﬂ:\/g/c, :i:\/§/4).

Again, the y-coordinate of the inflection points does not depend on c. but as ¢ increases, both inflection points

approach the y-axis.
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1 . . .
5 is an even function. and also that ]ilil f(x) = 0 for any value of c.soy = 0
r— oo

32. Note that f(z) = (—l’m

is a horizontal asymptote. We calculate the derivatives:
Fe) = —4(1 — %)z + 2cz _dz[z® + (3c—1)]
[(1—22)? +c:c2]2 [(1—22)? +c:cQ]2.
10z° + (9¢ — 18)z* + (3c® — 12¢ + 6)z® + 2 — ¢
[z4 + (c — 2)z2 4+ 1 '

We first consider the case ¢ > (). Then the denominator of f’ is

f/l (x) — 2

positive, that is. (1 — :c2)2 + cz® > 0 for all . so f has domain R and also f > 0. If 1¢ — 1 > 0; that is, ¢ > 2,
then the only critical point is f(0) = 1, a maximum. Graphing a few examples for ¢ > 2 shows that there are two IP
which approach the y-axis as ¢ — oo.

¢ = 2 and ¢ = 0 are transitional values of ¢ at which the shape of the curve changes. For 0 < ¢ < 2. there are

, both maximum values. As ¢

three critical points: f(0) = 1, a minimum value, and f(:t, /1— %c) = m

decreases from 2 to 0, the maximum values get larger and larger. and the z-values at which they occur go from 0 to
+1. Graphs show that there are four inflection points for 0 < ¢ < 2, and that they get farther away from the origin,
both vertically and horizontally. as ¢ — 0. For ¢ = 0. the function is simply asymptotic to the z-axis and to the

lines x = =1, approaching +oo from both sides of each. The y-intercept is 1, and (0, 1) is a local minimum. There

are no inflection points. Now if ¢ < 0, we can write
f(z) . L 1 So f has vertical
) = = = . S
(1 — 22)* + ca? (1—22)? - (,/_c;g)2 (22 — /=cz — 1) (2% + /=cz — 1)

asymptotes where 22 +/—cz —1=0 & z= (—v/—c+tVi—c)/20rz= (V=ctVi—c)/2 Asc

decreases, the two exterior asymptotes move away from the origin, while the two interior ones move toward it. We

graph a few examples to see the behavior of the graph near the asymptotes, and the nature of the critical points

r=0andz = +,/1 - jc

We see that there is one local minimum value, f(0) = 1. and there are two local maximum values,

f(i, /1— %c) = —c(_lflT/éﬁ as before. As c decreases, the z-values at which these maxima occur get larger, and

the maximum values themselves approach 0, though they are always negative.
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3. f(z) =cx+sinz = f'(z)=c+cosz = f'(z)=—-sinz

f(—z) = —f(z).so f is an odd function and its graph is symmetric with respect to the origin.

f(z) =0 < sinz = —cz.so 0 is always an z-intercept.

f'(x) =0 <& cosz = —c. so there is no critical number when [¢| > 1. If [c| < 1. then there are infinitely
many critical numbers. If z; is the unique solution of cos ¢ = —c in the interval [0, 7], then the critical numbers are
2nm + z1. where n ranges over the integers. (Special cases: When ¢ = 1. z1 = 0; when ¢ = 0, z = 7 and when
c=-l.z1=m)

f'(z) <0 <« sinz > 0.so f is CD on intervals of the form (2n, (2n 4 1)7). f is CU on intervals of the
form ((2n — 1)m, 2n7). The inflection points of f are the points (2nm, 2nmc). where n is an integer.

If ¢ > 1, then f'(z) > 0 forall z, so f is increasing and has no extremum. If ¢ < —1. then f’(z) < 0 for all z,
so f is decreasing and has no extremum. If |c| < 1.then f’(z) >0 < cosz > —c < zisinan interval of
the form (2nm — z1, 2nm + z1) for some integer n. These are the intervals on which f is increasing. Similarly, we
find that f is decreasing on the intervals of the form (2nm + z1,2(n + 1) — z1). Thus, f has local maxima at the
points 2n + 1, where f has the values ¢(2nm + z1) + sinz1 = ¢(2n7 + 1) + V1 — 2. and f has local
minima at the points 2nm — x1. where we have f(2nm — 21) = ¢(2nm — 1) —sinz1 = c(2nm — 1) — V1 — ¢2.

The transitional values of ¢ are —1 and 1. The

inflection points move vertically, but not horizontally.
when ¢ changes. When |c| > 1. there is no extremum. For
le] < 1, the maxima are spaced 2 apart horizontally, as

are the minima. The horizontal spacing between maxima

and adjacent minima is regular (and equals 7) when ¢ = 0,

but the horizontal space between a local maximum and the

nearest local minimum shrinks as |c| approaches 1.

34. For f(t) = C(e”** — e™*"). C affects only vertical stretching. so we let C' = 1. From the first figure, we notice

that the graphs all pass through the origin. approach the t-axis as ¢ increases, and approach —co as t — —oo. Next

we let @ = 2 and produce the second figure.

Here, as b increases, the slope of the tangent at the origin increases and the local maximum value increases.

ft)=e —e™® = f/(t) =be b — 2% f'(0) = b — 2, which increases as b increases.
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- _ b -
ft)=0 = be =272 = 5:6“’_2” = lng:(b—2)t = t:tlz_lnb ln?,which

b—2
(b —2)22/(t=2)

decreases as b increases (the maximum is getting closer to the y-axis). f(t1) = B2/ (=)

. We can show that
this value increases as b increases by considering it to be a function of b and graphing its derivative with respect to b,
which is always positive.

B.Ifc<0then lim f(z)= lim —— % lim —— —0,and lim f(z) = oo

z——00 r——oco T z——o0 Ce® z—00

Ifc>0.then lim f(z) = —co,and lim f(z) £ lim

T—00 z—o00 CcecT

If c = 0, then f(z) = z, so lil:il f(z) = £oo respectively.

So we see that ¢ = 0 is a transitional value. We now exclude the case ¢ = 0, since we know how the function
behaves in that case. To find the maxima and minima of f, we differentiate: f(z) = ze™°* =

(@) =z(—ce™ ") + e ® = (1 —cz)e . ThisisOwhen1 —cz =0 < 1z =1/c. Ifc < 0 then this
represents a minimum value of f(1/c) = 1/(ce), since f’(zx) changes from negative to positive at x = 1/c;

and if ¢ > 0. it represents a maximum value. As |c| increases, the 3
p

maximum or minimum point gets closer to the origin. To find the inflection -1

points, we differentiate again: f'(z) = e~ “*(1 —cz) =

f(z) = e "(—c) + (1 — cz)(—ce™**) = (cx — 2)ce”**. This -3 ===

changessignwhencx —2=0 <& = 2/c. Soas |c| increases, the 0

points of inflection get closer to the origin.

36. For ¢ = 0, there is no inflection point; the curve is CU everywhere. If ¢ increases, the curve simply becomes steeper.
and there are still no inflection points. If ¢ starts at 0 and decreases, a slight upward bulge appears near z = 0, so

that there are two inflection points for any ¢ < 0. This can be seen algebraically by calculating the second
derivative: f(z) =z'+cz® +z = f'(z)=42®+2cz+1 = f"(z) =12z + 2c. Thus, f’(z) >0
when ¢ > 0. For ¢ < 0, there are inflection points when z = + —éc. For ¢ = 0, the graph has one critical

number, at the absolute minimum somewhere around z = —0.6. As c increases, the number of critical points does
not change. If c instead decreases from 0, we see that the graph eventually sprouts another local minimum, to the

right of the origin, somewhere between z = 1 and z = 2. Consequently, there is also a maximum near z = 0.

After a bit of experimentation, we find that at ¢ = —1.5. there appear to be two critical numbers: the absolute
minimum at about = —1, and a horizontal tangent with no extremum at about z = 0.5. For any ¢ smaller

than this there will be 3 critical points, as shown in the graphs with _%

¢ = —3 and with ¢ = —5. To prove this algebraically, we calculate 2 ? f’,/‘_j_5
f'(z) = 42® 4 2cx + 1. Now if we substitute our value of ¢ = —1.5, the i

formula for f'(z) becomes 42> — 3z + 1 = (z + 1)(2z — 1)°. This has

a double root at x = % indicating that the function has two critical

points: £ = —landz = %,just as we had guessed from the graph.



SECTION 46 GRAPHING WITH CALCULUS AND CALCULATORS O 385

31. (a) f(z) = ca* — 22> + 1. Forc = 0. f(z) = —2z? + 1. a parabola whose vertex, (0, 1), is the absolute
maximum. For ¢ > 0., f(z) = cz* — 22% + 1 opens upward with two minimum points. As ¢ — 0, the minimum
points spread apart and move downward: they are below the z-axis for 0 < ¢ < 1 and above for ¢ > 1. For

¢ < 0, the graph opens downward, and has an absolute maximum at z = 0 and no local minimum.

(b) f'(z) = 4cz® — 4z = 4ex(z® — 1/c) (¢ #0). Ifc < 0.0 s the =4
only critical number. f”(x) = 12cz? — 4.s0 f"/(0) = —4 and there N //70:5?2 ol
is a local maximum at (0, £(0)) = (0,1). which liesony = 1 — 2°. ( )
If ¢ > 0, the critical numbers are 0 and &=1/4/c. As before, there is a
local maximum at (0, £(0)) = (0,1), which liesony = 1 — 2. - °
" (£1/\/c) =12 — 4 = 8 > 0, so there is a local minimum at L =y
z = +1//c Here f (£1/yc) =c(1/c®) —2/c+1=—1/c+ 1. o }}:_;'

But (£1/y/c, —1/c+ 1) liesony = 1 — z* since
1—(£1/ve)’ =1-1/c

38 (a) f(z) =22 +ca®+22 = f(z)=62"+2cx+2=2(32"+cz+1). f(z) =0 &
_ —cEt+Ve2-12
6

. So f has critical points < ¢ —12>0 < |¢| > 2v/3. Forc = £2/3.

f'(z) > 0on (—00,00).s0 f’ does not change signs at —c/6, and there is no extremum. If ¢> — 12 > 0, then

' ch . . —c—Vc? - . .
f' changes from positive to negative at x = 6 and from negative to positive at
—c+ Ve —12 , —c—+c?—12 .
= — % So f has a local maximum at z =  — and a local minimum at

_ —c++Vc?2-12
=——

(b) Let zo be a critical number for f(z). Then f'(z9) =0 =

—1 — 3x2
3z +cro+1=0 & c:—ic—o.Now
Zo

_ 3 2 3 2 -1 *31‘8
f(zo) = 2x0 + cxg + 2x0 = 2xp + 5 Y + 2o
0

3 3
:2x0—m073z0+210:m07z3

So the point is (zo, yo) = (mo, Ty — xg); that is, the point lies

on the curve y = = — x5
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4.7 Optimization Problems

1. (a) . We needn’t consider pairs where the first number
First Number | Second Number | Product )
is larger than the second, since we can just

1 22 22
9 21 4 interchange the numbers in such cases. The
3 20 60 answer appears to be 11 and 12, but we have
4 19 76 considered only integers in the table.
5 18 90
6 17 102
7 16 112
8 15 120
9 14 126

10 13 130

11 12 132

(b) Call the two numbers x and y. Then = + y = 23, so y = 23 — z. Call the product P. Then
P = zy = 2(23 — z) = 23z — z°. so we wish to maximize the function P(z) = 23z — z?. Since
P'(z) = 23 — 2z. wesee that P'(z) =0 < « = 2 = 11.5. Thus, the maximum value of P is

P(11.5) = (11.5)® = 132.25 and it occurs when z = y = 11.5.
Or: Note that P"'(z) = —2 < 0 for all . so P is everywhere concave downward and the local maximum at

z = 11.5 must be an absolute maximum.

2. The two numbers are z + 100 and z. Minimize f(z) = (z + 100)z = z* + 100z. f'(z) =22+ 100=0 =

z = —50. Since f’(z) = 2 > 0. there is an absolute minimum at z = —50. The two numbers are 50 and —50.

| 1 -1
3. The two numbers are x and 12—0 where z > 0. Minimize f(z) =z + 1—20 fl(x)y=1- % = x_;_()_o

The critical number is = 10. Since f'(x) < 0 for0 < z < 10 and f'(z) > 0 for z > 10. there is an absolute
minimum at = 10. The numbers are 10 and 10.
4. Letz > 0 and let f(z) = = + 1/z. We wish to minimize f(z). Now

PR G
f@)=1-==

f'(z) < 0for0 <z < land f'(z) > 0forz > 1. s0 f has an absolute minimum at z = 1, and f(1) = 2.

e (22 -1) = %(m + 1)(z — 1). so the only critical number in (0. 00) is 1.

Or: f"(z) = 2/x® > 0forall x > 0, so f is concave upward everywhere and the critical point (1,2) must
correspond to a local minimum for f.

5. If the rectangle has dimensions x and . then its perimeter is 2z + 2y = 100 m. so y = 50 — z. Thus. the area is
A = zy = z(50 — ). We wish to maximize the function A(z) = (50 — x) = 50z — z%, where 0 < < 50.
Since A'(z) = 50 — 2z = —2(z — 25), A'(z) > 0 for 0 < z < 25 and A’(z) < 0 for 25 < z < 50. Thus. A has
an absolute maximum at z = 25. and A(25) = 25° = 625 m?. The dimensions of the rectangle that maximize its

area are x = y = 25 m. (The rectangle is a square.)
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6. If the rectangle has dimensions = and y. then its area is xy = 1000 m?, soy = 1000/x. The perimeter
P = 2z 4 2y = 2z + 2000/z. We wish to minimize the function P(z) = 2z + 2000/ for z > 0.
P'(z) = 2 —2000/z* = (2/2) (z® — 1000). so the only critical number in the domain of P is z = /1000.
P"(z) = 4000/z> > 0, so P is concave upward throughout its domain and P (+/1000 ) = 4 v/1000 is an absolute
minimum value. The dimensions of the rectangle with minimal perimeter are x = y = v/1000 = 10v/10 m.

(The rectangle is a square.)

1. (a)

50 100 120

250

125 75

The areas of the three figures are 12,500, 12.500. and 9000 ft*. There appears to be a maximum area of at least
12,500 ft*.

(b) Let x denote the length of each of two sides and three dividers.

Let y denote the length of the other two sides. x

(c) Area A = length X width =y -z

(d) Length of fencing = 750 = 5z + 2y = 750

@5z+2y =750 = y=375-32z = A(z)=(375- 2z)z = 375z — £2?

(fy A'(z) =375 -5z =0 = z =75 Since A”(x) = —5 < 0 there is an absolute maximum when z = 75.

Then y = 2% = 187.5. The largest area is 75(322) = 14.062.5 ft>. These values of z and y are between the
values in the first and second figures in part (a). Our original estimate was low.

8. (a) (b) Let z denote the length of the side
of the square being cut out. Let y

19—

Bl
w

| 2 denote the length of the base.
2

X

y

The volumes of the resulting boxes are 1, 1.6875, and 2 ft. There

appears to be a maximum volume of at least 2 ft3.

(c) Volume V = length x width x height = V =y.y 2z = zy?
(d) Length of cardboard =3 = z+y+z=3 = y+2r=3
@©y+22=3 = y=3-2z = V(z)=z(3-2z)>
) V(z) =z(3-2z)> =

Vi(z) =x-2(3-2z)(-2) + (3 —22)% - 1 = (3 — 2z)[—4z + (3 — 2z)] = (3 — 2z)(—6z + 3).

so the critical numbers arez = $ and z = . Now 0 < z < £ and V(0) = V() = 0, so the maximum is

2
V(%) = (3)(2)® = 2 ft3, which is the value found from our third figure in part (a).
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9.

10.

1"

12.

13.

14.

xy = 1.5 x 10%, s0 y = 1.5 x 105/z. Minimize the amount of fencing.
which is 3z + 2y = 3z + 2(1.5 x 10%z) = 3z + 3 x 105z = F(x).
F'(z) =3 -3 x 10%z® = 3(z* — 10°) /2. The critical number is

z =10 and F’'(z) < 0for0 < & < 10% and F’'(z) > 0if z > 10, so

the absolute minimum occurs when z = 10% and y = 1.5 x 10°.
The field should be 1000 feet by 1500 feet with the middle fence parallel to the short side of the field.
Let b be the length of the base of the box and h the height. The volume is 32,000 = b*h = h = 32,000/b°.
The surface area of the open box is S = b® + 4hb = b* + 4(32,000/b%)b = b* + 4(32.000)/b. So
S'(b) = 2b — 4(32,000)/b> = 2(b* — 64.000) /b> =0 < b= ¥/64,000 = 40. This gives an absolute
minimum since S’(b) < 0if 0 < b < 40 and S’(b) > 0if b > 40. The box should be 40 x 40 x 20.
Let b be the length of the base of the box and h the height. The surface area is 1200 = b> 4+ 4hb =
h = (1200 — b*) /(4b). The volume is V' = b’h = b*(1200 — b*) /4b = 300b — b*/4 = V'(b) = 300 — 3p°.
V/())=0 = 300=3p" = b*=400 = b=+/400 = 20. Since V'(b) > 0for 0 < b < 20 and
V'(b) < 0 for b > 20. there is an absolute maximum when b = 20 by the First Derivative Test for Absolute
Extreme Values (see page 334). If b = 20. then h = (1200 — 20%) /(4 - 20) = 10. so the largest possible volume
is b2h = (20)?(10) = 4000 cm®.
V=Ilwh = 10=2w)(w)h = 2w?h,soh = 5/w?. The cost is
10(2w?) + 6[2(2wh) + 2(hw)] = 20w> + 36wh. so
C(w) = 20w* + 36w(5/w?) = 20w’ + 180/w.

2w C'(w) = 40w — 180/w® = 40 (w® — §)/w?® = w= {/g is the
critical number. There is an absolute minimum for C when w = i/g since C'(w) < 0for0 < w < €/§ and

2
C'w) > 0forw> /3. C(3/3) =20(3/3) + S ~ 16350
10 = (2w)(w)h = 2w?h. so h = 5/w?. The cost is

C(w) = 10(2w2) + 6[2(2wh) + 2hw] + 6(2w?)

w = 32w? + 36wh = 32w® + 180/w

2w
C'(w) = 64w — 180/w* = 4 (16w® — 45) /w® = w= {/$ isthe

critical number. C”(w) < 0 for 0 < w < /42 and C’(w) > 0 for w > {/42. The minimum cost is

C({/42) = 32(2.8125)* + 180 /28125 w~ $191.28.

(a) Let the rectangle have sides = and y and area A, so A = zy or y = A/z. The problem is to minimize the
perimeter = 2z + 2y = 2z + 2A/z = P(z). Now P'(z) = 2 — 24/2* = 2(z* — A) /z>. So the critical
number is z = v/A. Since P'(z) < 0for 0 < < v/A and P'(z) > 0 for z > v/A. there is an absolute
minimum at z = v/A. The sides of the rectangle are VA and A/\/X = V/A. so the rectangle is a square.

(b) Let p be the perimeter and x and y the lengths of the sides. sop =2x+2y = 2y=p—2z =
y = ip— . Theareais A(z) = z(3p — z) = lpr —2®> Now A'(z) =0 = 3p—-22=0 =
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2¢=13p = = jp. Since A”(x) = —2 < 0. there is an absolute maximum for A when z = 3p by the

Second Derivative Test. The sides of the rectangle are i p and % p— i p= i p, so the rectangle is a square.

15. The distance from a point (z, y) on the line y = 4z 4 7 to the origin is V(E =02+ (y—0)2= V2 +y2
However, it is easier to work with the square of the distance: that is.
2 . .
D(z) = (\/rc2 + y2) = 2% 4+ y® = 2 + (4z + 7)%. Because the distance is positive, its minimum value will
occur at the same point as the minimum value of D.
D'(z) =2z +2(4z +7)(4) =34z + 56,50 D'(z) =0 & z=-2.

D" (z) = 34 > 0.s0 D is concave upward for all z. Thus, D has an absolute minimum at x = —£>. The point

closest to the origin is (z,y) = (—2,4(-2) +7) = (-2, %).

16. The square of the distance from a point (z,y) on the line y = —6z + 9 to the point (-3, 1) is
D(z) = (z +3)*+ (y — 1)? = (z + 3)* 4+ (—6x + 8)% = 37z — 90z + 73. D'(z) = T4z — 90,50 D'(z) = 0

& = %. D"(x) = 74 > 0, s0 D is concave upward for all z. Thus, D has an absolute minimum at z = 42

37"
The point on the line closest to (—3,1) is (52, 82).
17. y From the figure. we see that there are two points that are farthest away

Px, y),

from A(1,0). The distance d from A to an arbitrary point P(z,y) on the

ellipse is d = \/(z — 1)2 + (y — 0)2 and the square of the distance is

S=d?*=2-2x+1+y* =2>—22+1+(4—42%) = —3z> —22+5.
§'=-6x-2andS' =0 = z=-3 NowS" =-6<0.s0we

know that S has a maximum at z = —3. Since -1 <z <1, 5(-1) = 4,

S(—3) = %&.and 5(1) = 0. we see that the maximum distance is /2. The corresponding y-values are

y=i\/4—4(—§)2=:i: $2 = £4V2 ~ +1.89. The points are (-1, £3v/2).

18. y The distance d from (1. 1) to an arbitrary point P(z,y) on the curve

y=tanzisd = /(z — 1)2 + (y — 1) and the square of the distance is
S=d?=(xr—1)>+ (tanz — 1)2

y=tany i x 8" =2(z—1)+2(tanz — 1) sec’ z. Graphing S’ on (—%, %) gives us a

zero at T ~ 0.82, and so tan z =~ 1.08. The point on y = tan z that is

closest to (1,1) is approximately (0.82,1.08).

19. /_\ The area of the rectangle is (22)(2y) = 4zy. Also % = 22 + 32 so
vior

-
Il
I
N
-
|
DIy

y = Vr? —z2 sothe area is A(z) = 4z /72 — 2. Now

........... A(z) = 4( "2 _ 52 _ m—2 — 4ﬂ The critical
5 Vre—z2)  \rZ_g2Z

X
v number is = ok Clearly this gives a maximum.
=\/r =/ 37% = J57 = z. which tells us that the

rectangle is a square. The dimensions are 2z = v/27 and 2y = v/2 7.
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20. y b The area of the rectangle is (2z)(2y) = 4zy. Now z—z + 2—22 =1 gives
(x, y) b b
Ty ; y= Em, so we maximize A(z) = 4593 VaZ —z2.
0 X
A(z) = %b [a: 1(a® - m2)_1/2(—2x) + (a® — 2% /2 1}
4b -1/2 4b
= T{(az - 2?) / [-2° +a® - 2% = Ve [a® — 227]

So the critical number is z = %a, and this clearly gives a maximum. Then y = %b, so the maximum area is

4(%(1) (%b) = 2ab.

21. T The height h of the equilateral triangle with sides of length L is 325 L,
. 2 2 _ 2 2 _ 12 2 _ 372
since h? + (L/2)° =L = KW =L"-3L°=3L =

ﬁL ﬁL_y ﬁL
. 2 hz%L. Using similartriang]es,z—w— = 2/2 =v3 =
y
+ \/ﬁngLAy = yz\/TgL~\/§x = y:?(L—Zw).
I L |

The area of the inscribed rectangle is A(z) = (2z)y = V3 (L — 2z) = v/3 Lz — 2+/3x2 where 0 < z < L/2.
Now0=A'(z) =v3L-4v3z = x=+3L/(4V/3) = L/4. Since A(0) = A(L/2) = 0, the maximum

occurs when z = L/4.and y = @L — 34§L = lgL. so the dimensions are L/2 and 34@L.

22, Y The rectangle has area A(z) = 2zy = 2z(8 — z*) = 16z — 22°. where
=8— 2 .
Y ! B 0<z<2/2 Now A'(z) =16 —-62° =0 = $:2\/g.Smce
x.y)
A(0) = A(2v/2) = 0. there is a maximum when z = 2 \/g Then
y
Y= 1—36. so the rectangle has dimensions 4 \/g and 1—36.
[ o \F
23. _" The area of the triangle is
| Az) = 1 (2t)(r + @) = t(r + =) = Vr? — 22(r + x). Then
r+x
—2z —2z
— A7) = 2 _ g2 _
‘ i O—A(m)ur2m+ r z+m2\/r_2__m2
z? 4 rx
=t Vr2-z =
/rZ — g2

2
LA TP 5 tre=r’ 2’ > 0=2Ftr—rt=Qo-n)(o+r) =
re —T
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T = %r orz = —r. Now A(r) =0 = A(—r) = the maximum occurs where z = %r. so the triangle has height
7+ 2r = 3randbase 21/72 — (%7‘)2 =2,/3r2=3r.
. . 3—y 3
24, [ The rectangle has area zy. By similar triangles — =1 =
3 3-v —4y—|—12:3w0ry:f%m+3. So the area is
l x A(z) = z(—32+3) = —32” 4+ 3z where 0 < z < 4. Now
y
{ - 2 I 0=A'(z)=-32+3 = z=2andy =% Since
A(0) = A(4) = 0. the maximum area is A(2) = 2(£) = 3 cm®.
25. 6 The cylinder has volume V = my?(2z). Also 2* + 3> =r? =
y? =12 — 2% s0 V(z) = n(r® — 2%)(2z) = 2rr(r’z — 2°). where
0<z<r.V'i(z)=2r(r?-32%)=0 = z=r//3.Now
k V(0) = V(r) = 0. so there is a maximum when z = r/2/3 and
V(rA3) =n(r? —r%/3) (2rV/3) = 471'7‘3/(3\/5) .
26. By similar triangles. y/x = h/r, so y = ha/r. The volume of the

cylinder is 7z2(h — y) = tha® — (wh/r)z® = V(z). Now
V'(z) = 2rhx — (3nh/r)z® = mhz(2 — 3z /7).

SoV'(z)=0 = z=0o0rz= %r. The maximum clearly occurs

when z = %r and then the volume is

mhz® — (rh/r)z® = tha?(1 — z/r) = 71'(%7’)2 h(1-2) = £nr’h.

21. 6 The cylinder has surface area

2(area of the base) + (lateral surface area)
= 2m(radius)? + 27 (radius)(height) = 27y? + 2my(2).
k Nowz? +y?=r* = ? =r>—2> = y=r2—22 sothe

< 2 surface area is

S(JI):27T(T‘2 —:1:2) +4rx\/r2—22, 0<z<r

=2nr® — 27z + 47r(z V2 — g2 )

Thus, S'(z) = 0 — 4nz + 4w [m G x2)_1/2(—2z) + (r* - m2)1/2 . 1]

2 2 2 2 2 2
x —TVre—z4“—x°+r°—=zx
+Vr2—z?| =4n -

:471'[7m7——

S()=0 = zvrZ—-z2=1r2-222 () = (m\/rz—x2)2:(r2—2w2)2 =
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2?(r? —2?) = —4r%2? + 42t = 22?2t =t 4?2 £ 4t = Brt — Brlz 4t — 0,
This is a quadratic equation in 2. By the quadratic formula, 22 = §%@r2. but we reject the root with the + sign
since it doesn’t satisfy (x). [The right side is negative and the left side is positive.] So z = A/ E’ﬁ@ r. Since
5(0) = S(r) = 0. the maximum surface area occurs at the critical number and z2 = 5%@73 =

yP=r?— 5'10‘/gr2 = Mvﬂ = the surface area is

O VRN v SR A Oz o) TN

T [M] =7r [—"'45] =7r (1+\/_)

5

28, Perimeter = 30 = 2y+ac+7r<§) =30 =
1 T r 7T .
=3 (30 —x— 7) =15— 51 The area is the area of the

- T2
rectangle plus the area of the semicircle, or zy + %77(5) . SO

= T TEN 12 1.2 ma2
A(:v)—:c(15 5 4)+87rw 15z — 52° — g2
15 60
S l+m/4 T 44T

60 30 157 60 + 157 — 30 — 157 30
. . ons _ _ = = ft.
maximum. The dimensions are x = = ftandy = 15 iox 11n gy s

Alz)=15-(1+3)z=0 = A'(z) = - (1 + %) < 0, so this gives a

so the height of the rectangle is half the base.

29. é zy =384 = y = 384/xz. Total areais
: A(z) = (8 + z)(12 + 384/z) = 12(40 + = + 256/z). s0
4 y y+12 A'(z) =12(1-256/2%) =0 = z = 16. There is an absolute
- minimum when z = 16 since A’(z) < 0 for0 < z < 16 and A'(z) > 0
rLA - for x > 16. When z = 16, y = 384/16 = 24. so the dimensions are
24 cm and 36 cm.
30. i zy = 180, so y = 180/z. The printed area is
T (z—2)(y —3) = (z —2)(180/z — 3) = 186 — 3z — 360/z = A(x).
y_3x_2 Y A'(z) = —3+360/x? = 0when z® =120 = z = 2+/30. This
N 1[ x ™ gives an absolute maximum since A’ (z) > 0 for 0 < z < 2+/30 and

A'(z) < 0forz >2+/30. Whenz = 230,y = 180/(2v/30). so the
dimensions are 2 /30 in. and 90/ /30 in.
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3. ; 10 ) Let z be the length of the wire used for the square. The total area is
' x T
_— _ §>2 1/10-z\vV3/10-z
Di fk%(‘% ! A@=(3) +3(7=) T (3
10—
o =L 4 ¥B(10-2)% 0<2<10
A’(w):%m—lig(w—w)zo & 7—929:—{-%1—407—5@:0 & x:g‘fl/\%.Now
~ - — 40v3_\

A(0) = (sig) 100 ~ 4.81, A(10) = 12 — 6.25 and A(Hm) ~ 2.72.50

(a) The maximum area occurs when z = 10 m, and all the wire is used for the square.

(b) The minimum area occurs when x = % ~ 4.35 m.

2 _ 2 2 10 — )2
32 10 , Total area is A(z) = (E) +7r<10 z) =2 4 M
x T 10—x ! 4 2w 16 4
10—z 1 1 5
x 0<z<10. Al(z) =2 - =(—+z)z-2=0 =
[:14 @ =T= () 8 2w (27r+8>:E T
ro © =40/(4 + 7). A(0) = 25/ ~ 7.96, A(10) = 6.25, and
A(40/(4 4 7)) ~ 3.5, so the maximum occurs when z = 0 m and the
minimum occurs when z = 40/(4 + 7) m.

33. The volume is V = mr2h and the surface area is

S(r) = mr? 4 2nrh = Tr* + 271'1‘(%%> =ar? + ﬂ

S'(T‘)=27r7‘—2—‘2;/—:0 = 2l =2V = r=‘3/zcm.
r ™

This gives an abselute minimum since S'(r) < 0for0 < r < ¢/ % and S'(r) > 0 forr > \3/ % When

34.

Voh=

r=3¢ = h=
V 7

|4 |4

w2 a(V/m)2s

N

1%
t/ — cm.
™

L =8csct+4sect,0<8< 2.
dL
db
secH tanf =2csch cotf < tan*d=2 < tanf= Y2 <
0:tan*1\3/§.

dL/df < 0 when 0 < 0 < tan~* /2. dL/d6# > 0 when

= —8csch cot + 4sech tan§ = 0 when

tan™' Y2 < 0 < Z+s0 L has an absolute minimum when

0 = tan™! \3/5 and the shortest ladder has length

V14922/3
L= 8—;T +4V1+2273 ~ 16.65 ft.

Another method: Minimize L? = z2 + (4 + y)°. where 1 _T_ ”

< | oo
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3. W4 =R = V=1Irh=I(R-h)h=2(R*h-hP).
— V'(h) = Z(R* — 3h*) = O when h = %R. This gives an absolute
R maximum. since V'(h) > 0 for0 < h < %R and V'(h) < 0 for

h > —\}—§R‘ The maximum volume is
1 p) _ 3 1 p3) _ 3
V(\/ER)_ (fR 3fR>_9f7rR

36. The volume and surface area of a cone with radius r and height h are given by V = —7rr2h and S = wrv/r2 + h2.
81

We'll minimize A = S® subjectto V =27. V=27 = im?h=27 = r?= —
™
81 812 —-2-812
A = w2r2(r2 2y _ 2) _ o1 ’_ _
wore(r* + h*) h 7rh +h e +8lwh,s0 A" =0 = s +8lr=0 =
2817 162 /1 /
81w = 3 = h3= 62 ~ 3.722. From (1),

81 81 27

2 " 2 4

rt=— = = r=— ~2632A =6-81°/h* > 0.s0 A and hence S has an
mh 7r~3~3/6/7r V6n? \/b 67?2 /

absolute minimum at these values of r and h.

37. Y By similar triangles. % = HT_h (1). The volume of the inner cone is
19 , Hr
V = 37T h. so we’ll solve (1) for h. = =H-h =
H Hr HR - Hr H

A ThuS,V('f‘):grz.%(R_r):%(Rr2_r3) =

, 9 _7rH B
Vi(r) = 3R (2R —3rf) = 3R r(2R — 3r).
V(r)=0 = r=00r2R=3r = r—2Randfrom(2)h:—H(R—zR)=—H(lR)—lH
- - - - 3 ’ R 3 R 3 3 .

V’(r) changes from positive to negative at 7 = %R. so the inner cone has a maximum volume of

V = gmr 2h = %W(ER)z(

2 1H) = 4 - $wR?H. which is approximately 15% of the volume of the larger cone.

3 _ 2 _ .3
38. (a) E(v) = S_L_% = E'(v)= aL(U(%SE—U -0 (b) E

when 20® = 3uv® = 2v=3u = v:%u.

The First Derivative Test shows that this value of v gives the N

minimum value of F.

39. S = 6sh — 3% cot 0 + 35242 cscd

(a) _—= 232(‘sc 0— 33°£csc0 cot or 2 5 cscO(cscO \/§cot0).
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ds 1 cos 1 . -
= = — = — —V3—=0 = 0 = —=. The First Derivative
(b) 0 0 whencscf — v3cotd =0 = pry V3 pr cos 7
Test shows that the minimum surface area occurs when 8 = cos™* <\/L§) ~ 55°.
(c) If cosf = \/- then cot 6 = \}5 and csc = % so the surface area is
- 233 _ 3 .2 9 2
\/3 \/2 S =6sh — % %‘}‘38 7%—63h—5——\/§s +2—\/§8

= 6sh + 3555 ~Gs(h+2\/- )
1

40. 15 km/h Let t be the time, in hours, after 2:00 P.M. The position of the boat heading

—_—

N
W O T g southattime tis (0, —20t). The position of the boat heading east at time ¢
is (=15 + 15¢,0). If D(¢) is the distance between the boats at time ¢, we
20 km/h

minimize f(t) = [D(t)]* = 20%t* + 15%(t — 1)*.
f'(t) = 800t + 450(t — 1) = 1250t — 450 = 0 when ¢ = % = 0.36 h.
0.36 h x $&M — 21.6 min = 21 min 36 s. Since f”'(t) > 0, this gives a

minimum, so the boats are closest together at 2:21:36 P.M.

2 —
41.HereT(x):V$6,J“25+58 0<z<5 = T(z)= 6\/;? g:0 & 8z=6v72+25

& 162 =9(z*+25) & z= \1/5— But \1/5- > 5, so T has no critical number. Since 7'(0) ~ 1.46 and

T'(5) = 1.18, he should row directly to B.
42. B In isosceles triangle AOB. Z0O = 180° — 6 — 6, s0o ZBOC = 26. The

distance rowed is 4 cos 6 while the distance walked is the length of arc
BC = 2(26) = 46. The time taken is given by

4cosf 460
= _ <9< I
3 + 1 2cos0+60. 0<0< 73

T'(0) = —2sinf+1=0 & sinf=1 = 0=

() =

o3

Check the value of T" at @ = % and at the endpoints of the domain of T’ that is, # = 0 and§ = Z. T'(0) = 2,
T(%) = V3 + £ ~226.and T(3) = I ~ 1.57. Therefore. the minimum value of T is % when 6 = T that is,

the woman should walk all the way. Note that 7" (f) = —2cos < 0for0 < 6 < Z,s060 = & gives a maximum
time.
. L 3k k
43. The total illumination is I(z) = — + 3 0 <z < 10. Then
3k ) (10 — z)?
61»: 2k
{;{‘Xﬁp.oﬂgﬁg I'(z) = —2 oy =0 = 610~ 2)? = 2%ka® =
' 10 ' 3(10—9:)3:1,3 = VB10-z)=z = 103-Bz==z
= 10\3/5232—}-\3/?-)9: = lO{’/ﬁz(l—}-%)m =
10Y3

~ 5.9 ft. This gives a minimum since I”(z) > 0 for

1+ Y3

0<z<10.
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O  CHAPTER4 APPLICATIONS OF DIFFERENTIATION

y The line with slope m (where m < 0) through (3, 5) has equation y — 5 = m(z — 3)

ory = mz + (5 — 3m). The y-intercept is 5 — 3m and the z-intercept is —5/m + 3.
So the triangle has area A(m) = 3(5 — 3m)(—5/m + 3) = 15 — 25/(2m) — 2m.

25 9
NowA’(m):ﬁ—E:O & m*=2 = m=-2incem <0).
"o ,, 25 . L 5
A" (m) = 5> 0. so there is an absolute minimum when m = —2. Thus, an

equation of the lineisy — 5 = —2(z — 3) ory = — 3z + 10.

Every line segment in the first quadrant passing through (a, b) with endpoints on the

A -
slope =m z- and y-axes satisfies an equation of the form y — b = m(z — a), where m < 0. By

(a.b) setting = 0 and then y = 0, we find its endpoints, A(0,b — am) and B(a — 2 0).

m’

B x  Thedistance d from A to B is given by d = \/[(a —2) =02 +[0— (b—am)]2.

It follows that the square of the length of the line segment, as a function of m, is given by

b\? 2ab  b?
S(m) = (a— —) +(am —b)* =a® — — + — +a?m? — 2abm + b%. Thus,
m m m
2ab  2b° 9 2 2 o 4 3
S’(m):m—ﬁ—i—Qa m—2ab=ﬁ(abm—b +a‘m —abm)

= %[b(am —b) +am®(am — b)] = —%(am —b)(b+ am?)

Thus, $'(m) =0 < m=b/aorm= —f/g. Since b/a > 0 and m < 0, m must equal —i/g. Since
2 , .
5 < 0, we see that S'(m) < 0 form < — {’/g and S'(m) > 0 form > — {’/g. Thus. S has its absolute

minimum value when m = — i/g That value is

2 2 2
S<_\3/§>= (a+by/3) + <-a €/§—5> = (a+ v ab2) + (\/Ba2b+b)
— a® + 2043623 4 a2/363 4 a¥362/3 4 2023643 + 1% = a? + 3aY/3b?/3 4 302/3b4/3 4 b2
The last expression is of the form z° + 3z2%y + 3zy? + ¢° [= (z + y)3] withz = a®/% and y = b2/3,

sO we can write it as (az/3 + b2/3)3 and the shortest such line segment has length VS = (az/3 + b2/3)3/2.

Ly =1+402% - 32° = ¢ =120z% - 15z*, so the tangent line to the curve at = a has slope

m(a) = 120a? — 15a*. Now m’(a) = 240a — 60a® = —60a(a® — 4) = —60a(a + 2)(a — 2).som'(a) > 0
fora < —2.and 0 < a < 2.and m/(a) < 0 for —2 < a < 0 and @ > 2. Thus, m is increasing on (—oo, —2).
decreasing on (—2, 0), increasing on (0, 2). and decreasing on (2, 00) . Clearly, m(a) — —oo as a — %00, so the
maximum value of m(a) must be one of the two local maxima, m(—2) or m(2). But both m(—2) and m(2) equal
120 - 22 — 15 - 2% = 480 — 240 = 240. So 240 is the largest slope, and it occurs at the points (—2, —223) and

(2,225). Note: a = 0 corresponds to a local minimum of m.
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41. Here s? = h? + b%/4.50 h? = s> — b*/4. The areais A = 3b /5% — b?/4.

Let the perimeter be p, s0o 2s +b=pors = (p—b)/2 =

A(b) = 1by/(p—b)?/4 — b¥/4 = b \/p* — 2pb/4. Now

fr2 N 2
b Ay = Y= Wl 3P et A'(B) =0 =
4 VP2 —2pb  4./p* —2pb

—3pb+p>=0 = b=p/3. Since A’'(b) > 0forb < p/3and A'(b) < 0 forb > p/3. there is an absolute

maximum when b = p/3. But then 2s + p/3 =p.sos =p/3 = s=0b = the triangle is equilateral.

48. See the figure. The area is given by

A(z) = 3(2va? — 22 )z + 3 (2Va? — 22 ) (Va2 + b2 — a?) = Va? — 2?(z + V22 + b? —a?) for

0<z<a NowA'(z) = a2~m2<1+

>+(z+\/w2+b2wa2)—_—af——-—0 &

T
Va2 4 b? — a? Va =z

z+m>

—x‘(.l'+\/1132+b2—0,2) :\/a2~m2<

a2 — x2

p ; - Except for the trivial case where z = 0, a = b and A(x) = 0. we have
x a7 T+ Vz2 + b2 — a2 > 0. Hence, cancelling this factor gives
7 _ 52
jg—:-;(b—_——)= \/azx_mz:\/mzibzz_az = oV P - =d -’ =
) 4 ’ 2 (2®+b* —a®) =a' —22°2° +2* = 2*(V* —d®) = a* - 2427
2012 2 4 a?
= z?(b*+a°)=a* = xzﬁ.

Now we must check the value of A at this point as well as at the endpoints of the domain to see which gives the

maximum value. A(0) = av/b? — a2, A(a) = 0 and

a? a? 2 a? a? 2
A<—> - a2 - ( > * ( ) +b2 _a2
va? 4+ b? Va2 + b2 Va2 + b2 Va2 + b2

_ ab { a? + b2 _ab(a®+b?) X
Va2t B |Vt Vet e+ ¢
2
Since b > v/b% — a2. A(a’/V/a® + b2) > A (0). So there is an absolute maximum when z = —2  Inthis

VET R

2ab . . a? + b?
———== and the vertical piece should b6 ——— = v/a? + b2.
A /a2 + b2 p 02 + b2 a

case the horizontal piece should be
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49. Note that [AD| = |AP|+|PD| = b5=z+|PD| = |PD|=>5— z. Using the Pythagorean Theorem

for APDB and APDC gives us

L(z) = |AP|+ |BP|+|CP| =z + /(5 — )2 + 22 + /(5 — x)2 + 32

=2+ 22 — 10z + 29 + /22 — 10z + 34

r—5 xr—5
Vo2 =10z +29  z2 — 10z + 34

= L(r)=1+

12 0.3

| (|
0 o]

9 -03

From the graphs of L and L', it seems that the minimum value of L is about L(3.59) = 9.35 m.

50. We note that since c is the consumption in gallons per hour, and v is the velocity in miles per hour, then

c _ gallons/hour  gallons

hd fles/h = ] gives us the consumption in gallons per mile, that is. the quantity G. To find the
v miles/hour mile

de dv de

vV— —Cc— V— —C
minimum. we calculate 4 = i(£> — _dv dv _ _dv .
dv dv

v v2 v?

ThisisOwhenv 9 —c =0 & 9 = € This implies that the
dv dv v

tangent line of c(v) passes through the origin, and this occurs when

v = 53 mi/h. Note that the slope of the secant line through the origin and

a point (v, c(v)) on the graph is equal to G(v). and it is intuitively clear

that G is minimized in the case where the secant is in fact a tangent.

51. A The total time is
all T(x) = (time from A to C) + (time from C to B)

5 _\/a2+m2+ b2+ (d—x)?
V2 ’

V1

O<z<d

sinf; sinf2

T'(z) = T d—=z
| d ;B viva? +x?2  wvay/b2 + (d—z)? v1 35
in 6 in 6
The minimum occurs when T/(z) =0 = Sn;—l = %g
1 2

[Note: T" (z) > 0]
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I If d = |QT)|. we minimize f(61) = |PR| 4+ |RS| = acsc: + besc ba.
N
d
Differentiating with respect to 6. and setting % equal to 0. we get
1
a
b
do
0, 0, djg—l = 0= —acsch cot; — beschz cot 02 30—?
Q R T

So we need to find an expression for Z—gﬁ We can do this by observing that |QT'| = constant = a cot 61 + bcot 02.
1

do-

Differentiating this equation implicitly with respect to 61. we get —a csc? 60y — besc? B, 7N 0 =
1
df2 acsc? 6, . . . df
—= = ————— We substitute this into the expression for —— to get
d6: ~ bosczgy o oou P a6, &
2 2
0 csc” 01 cot 0

—acscb; cot By — besc B2 cot O2 _2ec 1 =0 & —acschicoth, ta—2=272

besc? 64 csc B2

cot 6 cot 6
cotfycschy = cschycotl, < - 2

= & cosfly = cosB2. Since 01 and 02 are both acute. we
csc 04 csc B2

have 6; = 05.

x B A y® = 2% + 2%, but triangles CDE and BC A are similar. so
8—x
x ;}4 x—4 z/8=z/(4/z—4) = z=2z//xr—4.Thus, we minimize
£ 2_ 2 2 3
fl)=y"=z"+42*/(z —4) =2"/(z —4), 4<z<8

g Lo (e=9)(B2%) —2® 2Bz —4)—1] 27%(z —6)
b T " " e

=0

whenz = 6. f'(x) < 0 whenz < 6, f'(z) > 0 when z > 6, so the

minimum occurs when z = 6 in.

B Paradoxically, we solve this maximum problem by solving a minimum
problem. Let L be the length of the line AC B going from wall to wall

touching the inner corner C. As @ — 0 or § — 7, we have L — oo and

there will be an angle that makes L a minimum. A pipe of this length will
just fit around the corner.

From the diagram, L = Ly + Ly = 9cscf + 6sec = dL/d0 = —9csch cot + 6secd tanf = 0 when
6sech tanf = 9cscl cotd < tan®h = % =15 < tanf = J/1.5. Thensec?d =1 + (g)z/s and
csc?h =1+ (%)_2/3. so the longest pipe has length L = 9[1 + (%)_2/3] i + 6[1 + (%)2/3] 1/2_ ~ 21.07 ft.

Or.use § =tan™'(V15) ~ 0852 = L =9csch+ 6sechd ~ 21.07 ft.
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55. It suffices to maximize tan §. Now
0 3t tan + tanf t+ tan 6
4 1 an(y + ) 1 —tany tanf 1 —ttan@’

So3t(l —ttanf) =t +tanf = 2t= (1+3t*)tand =

| t - tan = 1+3t2.Letf(t):tanl9:i%
2 2
f = = -:131 )3t2)zt(6t) - ?§1+ 3;?;)22 =0
1-3t2=0 & t:%sincetzo.
Now f'(t) >0for0 <t < ﬁ and f'(t) < O fort > % so f has an absolute maximum when ¢ = %
and tan 0 = M—— = % = 0 = %. Substituting for ¢ and 6 in 3t = tan(y + 6) gives us

1+3(14/3)°
V3 = tan(¢ + = 9

(L]

56.
We maximize the cross-sectional area
A(0) = 10h + 2(3dh) = 10h + dh = 10(10sin6) + (10 cos #)(10sin 6)
=100(sin @ +sinf cosd), 0<O< 3
A" (0) =100(cos 6 + cos” 0 — sin’ 6) = 100(cos 6 + 2 cos® 6 — 1) = 100(2cosf — 1)(cosf + 1)
=0Owhen cosf =3 < 6=25 (cosf#—1since0<H<7T)
Now A(0) = 0. A(%) = 100 and A(%) = 75 v/3 ~ 129.9. so the maximum occurs when 6 = %.
51. From the figure. tan o = 5 and tan 8 = L Since
T 3—x

2
a+5+0=18OO=7r.0=7r—tan_l<§>—tan_1< > =
T 33—z

o 1

I 1“+—(5_>2<‘%)_1+(:L>2[<3—2z)2}

— X

A P B z2 5 (3 —x)? 2

22425 22 (3-2)2+4 (3-2)

Nowd—G*O = 5 = 2
dz ~ z2+25  z2—6z+13

322 -30xr+15=0 = 2>2—10z+5=0 = =5+ 2+/5. We reject the root with the + sign.
since it is larger than 3. df/dx > 0 forx <5 —2 V5 and df/dx < O forz > 5 — 2 V/5. 50 6 is maximized
when |[AP| =z =5 — 2/5 ~ 0.53.

= 222 +50=522—-30z+65 =
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58. Let x be the distance from the observer to the wall. Then. from the given figure.

6 = tan~* <h—+—£l> —tan~! <é>r >0 =
T T

do 1 [_h—l—d} 1 [ d]:_ h+d d

dz  14jh+d)/zP | 2 | 1+(@d? | 2 21t d} P E
Cdla®+ (h+d)’) = (h+ d)(a® +d°) h%d + hd? — ha? _
B [22 + (h + d)*] (22 + d?) 22+ (h+d)?) (22 + d?)

haz? = h2d+hd® & z*=hd+d> < z=/d(h+d).Sincedd/dz > 0forallz < \/d(h+d) and
df/dx < 0 for all z > 1/d(h + d). the absolute maximum occurs when x = \/d(h + d).

59. b J In the small triangle with sides a and c and hypotenuse W, sin § = %
4 0 and cosf = % In the triangle with sides b and d and hypotenuse L,
L
w
e\ sinf = % and cos § = % Thus. a = Wsin6. ¢ = W cos 8, d = Lsiné.

and b = L cos 6. so the area of the circumscribed rectangle is

A(0) = (a+b)(c+d) = (Wsinf + Lcos§)(W cosf + Lsinh)
=W?sinf cosf + WLsin?> 0 + LW cos> 6 + L*sin 6 cos
= LW sin® @ + LW cos® 6 + (L* + W?)sin6 cos
= LW (sin® 0 + cos® 6) + (L? + W?) - L - 25in6 cosd
=LW + 3(L* + W?)sin20. 0<0<Z

This expression shows, without calculus, that the maximum value of A(6) occurs whensin20 =1 < 20=71

= 0= 2. Sothe maximumareais A(%) = LW + %(L2 + W2) = %(L2 +2LW + Wz) =1L +W)2

60. (a) Let D be the point such that a = |AD|. From the figure, sin § = —IBbC| = |BC|=bcsch and
IBD| a— |AB| . .
9 - —_— = = — .
cos 1BC| BC] = |BC| = (a — |AB|)sec#. Eliminating |BC| gives

(a —|AB|)sec =bcscl = beot =a—|AB] = |AB| = a— bcot#. The total resistance is
R(O) :C'IflABl +C|BT4C' _ C(a—bcot& n bcsc0>.

1 2 ri T3
besc? S y
(b) R'(6) = C( CSZ o bcsc()4cot0) _ bCCSC@(CSia B coi&)
1 s ri T4
4
RO)=0 csc40:c026 - %:COtH:cosﬁ.
ri Ty r{  cscé
, cscl t 6 3 , 4
R (0) >0 < i C?A = cosf < % and R'(6) < 0 when cos6 > %. so there is an absolute
1 2 1 1

minimum when cos 8 = r%/rf.

(c) When ro = %rl. we have cos 6 = (%)4. s0f = cc>s*1(—§)4 = T79°.
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61. (a) If £ = energy/km over land, then
5 Jx+ 25 energy /km over water = 1.4k. So the total energy is

E=14kv/25+ 22 + k(13 — 2).0 < z < 13,

B x C 13—x D dE 1.4k
ands0 — = ———— —

dz (254 z2)'/?
dE
Set = =0: L4kz = k(25 +2%)"/° = 1962° =2%+25 = 09622=25 = 2= 2 ~51.
dx 0.96

Testing against the value of E at the endpoints: £(0) = 1.4k(5) + 13k = 20k, E(5.1) ~ 17.9k.
E(13) ~ 19.5k. Thus, to minimize energy, the bird should fly to a point about 5.1 km from B.

(b) If W/ L is large. the bird would fly to a point C that is closer to B than to D to minimize the energy used flying

over water. If W/ L is small. the bird would fly to a point C that is closer to D than to B to minimize the

. dE Wz
distance of the flight. E = W25+ 22+ L(13 —2) = — = ———— — L = 0 when
g ( ) dx 25 + z?
W V2 2
T = % By the same sort of argument as in part (a), this ratio will give the minimal expenditure of

energy if the bird heads for the point z km from B.

(c) For flight direct to D. z = 13. so from part (b), W/L = @ ~ 1.07. There is no value of W/ L for which

the bird should fly directly to B. But note that 1im+(W/L) = 00. so if the point at which E is a minimum is
z—0
close to B, then W/ L is large.
(d) Assuming that the birds instinctively choose the path that minimizes the energy expenditure, we can use the
1/2

equetion for dE/dz = 0 from part (a) with 1.4k = c.z =4.and k = 1: (¢)(4) = 1 - (25 + 4?) =
c= \/éﬁ/4 ~ 1.6.

strength of source

62. (a) I(z) x . Adding the intensities from the left and right lightbulbs.

(distance from source)?
k k k k
I(z) = z? + d? + (10 — z)* + d? T z2 4 d2 + 2 — 20z + 100 + d2°

(b) The magnitude of the constant & won’t affect the location of the point of maximum intensity, so for convenience
2z _ 2 (z —10)
(22 4+ d?)* (22 — 20z 4 100 + d2)*’
Substituting d = 5 into the equations for I(z)and I'(z), we get
1 1 2x 2(x — 10)
I = d Ii(z) = — —
@)= i E Y ey M @) = i m? T (- 2001125

0.06 0.005 From the graphs, it appears that I5(x)

I 4 .o
[\ "/\] has a minimum at z = 5 m.
ol\/ J 10
ol 10

-0.01 —0.005

wetake k = 1. I'(z) = —
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(c) Substituting d = 10 into the equations for I(z) and I'(x) gives I10(x) = 1100 + =7 202 7900 and
Lo(z) = — 2z - 2 (z — 10) .
(z2 + 100) (22 — 20z + 200)
0.017 0.0006 From the graphs. it seems that for
Lo Iy } d = 10. the intensity is minimized at the
0 jo  endpoints, that is. = 0 and z = 10.
L J The midpoint is now the most brightly lit
oot 0 ~0.0006 point!

(d) From the first figures in parts (b) and (c). we see that the minimal illumination changes from the midpoint

(z = 5 with d = 5) to the endpoints (z = 0 and z = 10 with d = 10).

0.0365 0.023 0.01
I 1 I
I 10) - I(5)
I()
0 [ T 10
0 10 0 10
0.0325 X 0.0215 x -0.01 d

So we try d = 6 (see the first figure) and we see that the minimum value still occurs at x = 5. Next, we let
d = 8 (see the second figure) and we see that the minimum value occurs at the endpoints. It appears that for
some value of d between 6 and 8. we must have minima at both the midpoint and the endpoints, that is, 1(5)
must equal I(0). To find this value of d. we solve I(0) = I(5) (with k = 1):

i+ 1 1 N 12 -
d2 " 100+d2 25+d2  25+4d2 25+d2

(25 +d?) (100 + d*) + d*(25 + d°) = 24*(100 +d*) =

2500 + 125d° 4 d* + 25d° + d* = 200d® + 2d* = 2500 = 50d> = d® =50 =

d =52~ 7.071 (for 0 < d < 10). The third figure. a graph of I(0) — I(5) with d independent. confirms that
I(0) — I(5) = 0, that is, I(0) = I(5), when d = 5+/2. Thus, the point of minimal illumination changes

abruptly from the midpoint to the endpoints when d = 5 /2.

APPLIED PROJECT The Shape of a Can

1. In this case, the amount of metal used in the making of each top or bottom is (21")2 = 472, So the quantity we want
to minimize is A = 27rh + 2(4r2). But V =7r’h < h = V/xr? Substituting this expression for h in A
gives A = 2V/r + 8r®. Differentiating A with respect to r. we get dA/dr = —2V/r*> + 16r =0 =

2
~ 2.55. This gives a minimum because dA =16 + g > 0.
r

16r® =2V = 2%k < h_
r dr?

3 |oo
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2

We need to find the area of metal used up by each end., that is. the area of each
hexagon. We subdivide the hexagon into six congruent triangles, each sharing

one side (s in the diagram) with the hexagon. We calculate the length of

s=2rtan % = %r, 50 the area of each triangle is 2sr = %72. and the total

area of the hexagon is 6 - \%TQ =2+/37% Sothe quantity we want to

minimize is A = 2rrh + 2 - 2/3 72,

Substituting for i as in Problem | and differentiating, we get Ccli—A = —% + 8 /3. Setting this equal to 0. we get
r r
. h 4
8373 =2V = 21r’h = ;l = 7\r/_ ~ 2.21. Again this minimizes A because =83 + — > 0.

. Let C = 4+/37r% + 2nrh + k (47r + h) = 4372 +27rr< ‘: ) +k<47rr+L>‘Then

2kV
=8+v3r— + 4km — ——. Setting this equal t0 0. dividing by 2 and substituting ZQ = 7hand
r
|4 h . . . kh
i in the second and fourth terms respectively, we get 0 = 4/3r — wh + 2kr — —
r

h k 2r—h v
k<27r — ;) =7h—4V3r = ———7—1-———/1"— = 1. We now multiply by \/V noting that

T wh/r — 43 k
Ik _ofV _ofah o IV TR am by
kr V3V ¢~ ko Vor gh/r—4y3
25 i Let ¥/V /k = T and h/r = x so that T(z) = ¥/7z - —M We see

r —4 \/§
from the graph of T that when the ratio IV /k is large: that is, either the

volume of the can is large or the cost of joining (proportional to k) is

0 t 4
m J small, the optimum value of h/r is about 2.21, but when YV [k is small,

indicating small volume or expensive joining, the optimum value of h /7 is

larger. (The part of the graph for \3/\_//k < 0 has no physical meaning. but

confirms the location of the asymptote.)

. Our conclusion is usually true in practice. But there are exceptions, such as cans of tuna, which may have to do with

the shape of a reasonable slice of tuna. And for a comfortable grip on a soda or beer can. the geometry of the human
hand is a restriction on the radius. Other possible considerations are packaging, transportation and stocking
constraints. aesthetic appeal and other marketing concerns. Also. there may be better models than ours which

prescribe a differently shaped can in special circumstances.
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4.8 Applications to Business and Economics
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1. (a) C(0) represents the fixed costs of production, such as
rent. utilities, machinery etc.. which are incurred even
when nothing is produced.

(b) The inflection point is the point at which C"'(x) changes
from negative to positive; that is, the marginal cost C’ ()
changes from decreasing to increasing. Thus, the

marginal cost is minimized at the inflection point.

2. (a) We graph C’ as in Example 1 in Section 2.9.

(c) Since the graph in part (b) is decreasing. we estimate that
the minimum value of ¢(x) occurs at = 7. The average
cost and the marginal cost are equal at that value. See the

box preceding Example 1.

(¢) The marginal cost function is C’(x).

We graph it as in Example 1 in
Section 2.9.

(b) By reading values of C(x) from its

graph, we can plot ¢(z) = C(z) /.

c
200

100

3. ¢(x) =214 —-0.002z and c(z) = C(z)/z = C(z) = 21.4z — 0.002z% C'(z) = 21.4 — 0.004z and

C'(1000) = 17.4. This means that the cost of producing the 1001st unit is about $17.40.

4. (a) Profit is maximized when the (b) P(z) = R(z) — C(z) is

marginal revenue is equal to the sketched.
marginal cost; that is, when R and
C have equal slopes. See the box

preceding Example 2.

defined as P'(z).

(¢) The marginal profit function is
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5. (a) The cost function is C(z) = 40,000 + 300z + x>, so the cost at a production level of 1000 is
C(z)  40.000

C(1000) = $1.340.000. The average cost function is c(x) = = ——— 4300 + z and
z z

¢(1000) = $1340/unit. The marginal cost function is C'(z) = 300 + 2z and C’(1000) = $2300/unit.

(b) See the box preceding Example 1. We must have C’ () = c(z) < 300+ 2z = 40% +3004+z &

40,000
- T

x? =40.000 = z = /40,000 = 200. This gives a minimum value of the average cost

80. 000

function ¢ (z) since ¢’ (z) = > 0.

(c) The minimum average cost is c(200) = $700/unit.

6. (a) C(z) = 25.000 + 120z + 0.1z, C(1000) = $245.000. c(z) = C(x) 2Ll

¢(1000) = $245 /unit. C'(z) = 120 + 0.2z. C'(1000) = $320/umt.

(b) We must have C'(z) = c(z) ¢ 120 + 0.2z = 2> 300 120401z & 01z = 25000
T

50, 000
3

+ 120 + 0.1z,

0.1z = 25000 = z = /250,000 = 500. This gives a minimum since ¢’ (z) =
(¢) The minimum average cost is ¢(500) = $220.00/unit.

1. (a) C(z) = 16.000 + 200z + 4z*/2, C(1000) = 16.000 + 200.000 + 40,000 v/10 ~ 216,000 + 126.491. so

16,000

C(1000) ~ $342.491. ¢(z) = C(z)/z = + 200 + 4z'/2, ¢(1000) ~ $342.49 /unit.

C’(z) = 200 + 62/, C"(1000) = 200 + 60 /10 ~ $389.74/unit.

16.000

(b) We must have C'(z) = c(z) & 200+ 62'/2 = +200 +42? o 22%/2=16000 &

z = (8.000)%/% = 400 units. To check that this is a minimum. we calculate

oy 16000 22 g
c(z) = 2 +\/5_ac2(

and positive for z > 400. so c is decreasing on (0,400) and increasing on (400, c0). Thus, c has an absolute

8000). This is negative for z < (8000)*® = 400. zero at z = 400.

minimum at z = 400. [Note: ¢’ () is not positive for all z > 0.]
(c) The minimum average cost is ¢(400) = 40 + 200 + 80 = $320/unit.
8. () C(x) = 10.000 + 340z — 0.3z + 0.0001z*, C(1000) = $150.000.
(@) = Cla)z = 10000
C'(z) = 340 — 0.6z + 0.0003:10 . C'(1000) = $40/unit.

+ 340 — 0.3z + 0.000122, ¢(1000) = $150/unit.

10.000
(b) We must have C’(z) = c(z) < 340 — 0.6z + 0.0003z> = — 340 — 0.3z + 0.0001z> <
0.00022% = 29990 L 53 o 0.00022° — 0.32% — 10000 =0 < z° — 1500z — 50.000.000 = 0
T
. o . . " 20, ooo
= = 1521.60 ~ 1522 units. This gives a minimum since ¢” (z) = + 0.0002 > 0.

(c) The minimum average cost is about ¢(1521.60) ~ $121.62 /unit.

9. (a) C(z) = 3700 + 5z — 0.04z> + 0.0003z°> = C'(z) =5 — 0.08z + 0.0009z> (marginal cost).
00
oz) = Cfcm) 3700

2 +5—0.04z + 0.0003z? (average cost).
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(b) The graphs intersect at (208.51, 27.45), so the production

level that minimizes average cost is about 209 units.

500

(©) c(z) = — 3720 —0.04+0.0006z =0 = 3700+ 0.042® — 0.0006z°> =0 = x; ~ 208.51.
X

c(z1) ~ $27.45 /unit.
(d) The marginal cost is given by C’(z). so to find its minimum value we’ll find the derivative of C: that is, C".
C"(z) = —0.08+0.0018z =0 = ;= B0 = 44.44. C'(z1) = $3.22/unit.

C"'(z) = 0.0018 > 0 for all z, so this is the minimum marginal cost. C""' is the second derivative of C".

10. (a) C(x) = 339 + 25z — 0.092° + 0.0004z°> = C'(z) = 25 — 0.18z + 0.0012z2 (marginal cost).
o(z) = C(z) _ 339

. + 25 — 0.09z + 0.0004z2 (average cost).
z
(b) 100 The graphs intersect at (135.56, 22.65), so the production

level that minimizes average cost is about 136 units.

500

339
© c(2) = == ~0.09+0.00082 =0 = z, ~13556. c(z1)~ $22.65/unit.

(@ C"(z) = ~0.18+000242 =0 = =182 — 75 C'(75) = $18.25 /unit,
C"(x) = 0.0024 > 0 for all z, 5o this is the minimum marginal cost.

1. C(z) = 680 + 4z + 0.01z% p(z) = 12 = R(z) = zp(z) = 12z. If the profit is maximum. then
R(z)=C'(z) = 12=4+0.02 = 002z 8 = 1z =400. The profit is maximized if P"(z) < 0.
but since P"(z) = R"(z) — C"(z). we can just check the condition R”(z) < C"(x). Now

R'(z) =0 < 0.02 = C"(z). 50 z = 400 gives a maximum.

12. C(z) = 680 + 4z + 0.01z2. p(z) =12 — 2/500. Then R(z) = zp(x) = 127 — «*?/500. If the profit is
maximum, then R'(z) = C’(z) [See the box preceding Example 2.] < 12 — /250 = 4+ 0.02z <
8=0024r & z=28/0.024 = 1920 The profit is maximized if P"(z) < 0. but since
P"(z) = R"(z) — C"(z). we can just check the condition R (z) < C"(z). Now
R'(z) = -5k < 0.02 = C"(z).s0z = 1090 gives a maximum,

13. C(z) = 1450 + 362 — 22 + 0.00123. p(z) = 60 — 0.01z. Then R(z) = zp(x) = 60z — 0.01z>. If the profit is
maximum, then R'(z) = C’(z) <« 60 — 0.02z = 36 — 2 +0.0032° = 0.0032% — 1.982 — 24 — 0, By
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14.

15.

16.

17.

18.

19.

1.98 + 1/(~1.98)2 + 4(0.003)(24) _ 1.98 + /4.2084
2(0.003) N 0.006

z ~ (1.98 + 2.05)/0.006 ~ 672. Now R"(z) = —0.02 and C"(z) = —2 + 0.006z = C"(672) = 2.032
= R'(672) < C"(672) = thereis a maximum atz = 672.

the quadratic formula, z = . Since z > 0

C(z) = 16.000 + 500z — 1.62* + 0.004z>, p(x) = 1700 — 7z. Then R(z) = zp(z) = 1700z — 7z2. If the

profit is maximum, then R'(z) = C'(z) <« 1700 — 14z = 500 — 3.2z + 0.01222 &

0.01222 + 10.8¢ — 1200 = 0 < z° + 900z — 100.000 =0 < (x4 1000)(z —100) =0 <« =z =100

(since z > 0). The profit is maximized if P”(z) < 0. but since P"(z) = R"(z) — C"(x). we can just check the

condition R (z) < C"(z). Now R (z) = —14 < —3.2 + 0.024x = C"(z) for z > 0. so there is a maximum at

z = 100.

C(z) = 0.001z* — 0.3z° + 6 + 900. The marginal cost is C'(z) = 0.003z® — 0.6z + 6.

C'(z) is increasing when C"(z) >0 <« 0.006z -0.6>0 <« z> 0.6/0.006 = 100. So C’(z) starts to

increase when = = 100.

C(z) = 0.0002z* — 0.25z + 4z + 1500. The marginal cost is C'(z) = 0.0006z> — 0.50z + 4.

C'(x) is increasing when C"'(z) >0 & 0.0012z - 05>0 & > 0.5/0.0012 = 417. So C’ () starts to

increase when z = 417.

(@) C(z) = 1200 + 122 — 0.1z + 0.0005z°. 10.000
R(z) = zp(x) = 29z — 0.00021z.

R
Since the profit is maximized when R'(z) = C'().
we examine the curves R and C in the figure, looking for x-values at c
which the slopes of the tangent lines are equal. It appears that z = 200 is
0 - 400

a good estimate.

(b) R'(z) =C'(z) = 29—0.00042z = 12 — 0.2z + 0.00152> = 0.0015z% — 0.19958z —17=0 =
= ~ 192.06 (for z > 0). As in Exercise 11, R"(z) < C"(z) = —0.00042 < —-02+0.003z <
0.003z > 0.19958 < x> 66.5. Our value of 192 s in this range. so we have a maximum profit when we
produce 192 yards of fabric.

(a) Cost = setup cost + manufacturing cost = C(z) = 500 + m(z) = 500 + 20z — 52%/% +0.01z°.
We can solve z(p) = 320 — 7.7p for p in terms of z to find the demand (or price) function.

320 — 320z — z°
£ =320-77p = T7p=320-z = p(r)="% 2 R(z)=ap() = "
—2
(b) C'(z) = R'(z) = 20— 14533_1/4 +0.02z = §2—07—7—33 = 1z ~ 81.53 planes, and

p(x) = $30.97 million. The maximum profit associated with these values is about $463.59 million.

(a) We are given that the demand function p is linear and p(27,000) = 10, p(33,000) = 8.s0 the slope is
oo = — 5255 and an equation of the line is y — 10 = (—3a55) (& — 27.000) =

y = p(z) = — 505 + 19 = 19 — (z/3000).

(b) The revenue is R(z) = zp(z) = 192 — (x/3000) = R'(z) = 19 — (/1500) = 0 when z = 28.500.
Since R (z) = —1/1500 < 0. the maximum revenue occurs when x = 28,500 = the price is
p(28.500) = $9.50.
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20. (a) Let p(x) be the demand function. Then p(z) is linear and y = p(z) passes through (20, 10) and (18, 11), so the

slope is — and an equation of the line is y — 10 = —3(z—=20) & y=—1z+20. Thus, the demand is

p(z) = —%x + 20 and the revenue is R(z) = zp(z) = —%12 + 20z.

(b) The cost is C(z) = 6z, so the profit is P(z) = R(z) — C(z) = —32% 4+ 14z. Then 0 = P(z)=—z+14
= & = 14. Since P"(x) = —1 < 0, the selling price for maximum profitis p(14) = —2(14) + 20 = $13.

21. (a) As in Example 3, we see that the demand function p is linear. We are given that p(1000) = 450 and deduce that

p(1100) = 440, since a $10 reduction in price increases sales by 100 per week. The slope for p is

440 — 450
1100 — 1000

= —15. 50 an equation is p — 450 = — 15 (z — 1000) or p(z) = — =z + 550.
(b) R(z) = zp(z) = —{52° +550z. R'(z) = — 1z + 550 = 0 when z = 5(550) = 2750.
p(2750) = 275, so the rebate should be 450 — 275 = $175.
(c) C(z) = 68,000 + 150z =
P(z) = R(z) - C(z) = ~% 2% + 550z — 68.000 — 150z = — 2% + 400z — 68,000,
P'(z) =~z + 400 = 0 when z = 2000. P(2000) = 350. Therefore, the rebate to maximize profits should
be 450 — 350 = $100.
22. Let z denote the number of $10 increases in rent. Then the price is p(z) = 800 + 10z, and the number of units
occupied is 100 — z. Now the revenue is
R(z) = (rental price per unit) x (number of units rented)

= (800 + 102)(100 — ) = —1022 + 200z + 80.000 for 0<z<100 =

R'(z) =-20c+200=0 < z=10. This is a maximum since R (z) = —20 < 0 for all z. Now we must
check the value of R(z) = (800 + 10z) (100 — z) at z = 10 and at the endpoints of the domain to see which value
of z gives the maximum value of R. R(0) = 80.000, R(10) = (900)(90) = 81.000. and

R(100) = (1800)(0) = 0. Thus. the maximum revenue of $81.000/week occurs when 90 units are occupied at a
rent of $900/week.

23. If the reorder quantity is z, then the manager places % orders per year. Storage costs for the year are

12 -4 = 2z dollars. Handling costs are $100 per delivery. for a total of % -100 = 80,000 dollars. The total
. 80.000 L
costs for the year are C(z) = 2z + - To minimize C(z), we calculate
80,000 2 . . .
C'(z) =2 - = P(xQ — 40,000). This is negative when z < 200, zero when  — 200. and positive when

x > 200, so C is decreasing on (0,200) and increasing on (200. 00). reaching its absolute minimum when

x = 200. Thus, the optimal reorder quantity is 200 cases. The manager will place 4 orders per year for a total cost
of C(200) = $800.
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24. She will have A/n dollars after each withdrawal and 0 dollars just before the next withdrawal, so her average cash
balance at any given time is 2(A/n + 0) = A/(2n). The transaction costs for n withdrawals are nT'. The lost

interest cost on the average cash balance is [A/(2n)] - R. Thus, the total cost for n transactions is

AR AR AR AR
C(n) = nT + =—. ") = T — = & "(n) = a2 7 2 _
(n) =nT + o Now C’(n) 52 andC'(n) =0 = o2 = = n 5

AR L . 1 AR
=y or the value of n that minimizes total costs since C"'(n) = ——- < 0. Thus, the optimal average cash
n

. AV2T VAT AT
balance is — = = 1= =,/ =
2n 2+v/AR V2R 2R

4.9 Newton's Method

1. (a) y The tangent line at z = 1 intersects the z-axis at
z =~ 2.3. 50 2 ~ 2.3. The tangent line at
x = 2.3 intersects the z-axis at T ~ 3.
/ so z3 ~ 3.0.
1\ N 5 *

(b) z1 = 5 would not be a better first approximation than 21 = 1 since the tangent line is nearly horizontal. In fact,

the second approximation for 1 = 5 appears to be to the leftof x = 1.

2. y The tangent line at x = 9 intersects the z-axis at z =~ 6.0, so
€2 ~ 6.0. The tangent line at z = 6.0 intersects the x-axis at

z ~ 8.0, s0 3 ~ 8.0.

3. Since z1 = 3and y = bz — 4 is tangent o y = f(x) at z = 3, we simply need to find where the tangent line

intersects the z-axis. y=0 = br2—4=0 = 2= 3

4. (a) ' (b)

—

If 1 = 0. then z2 is negative, and z3 is even If 21 = 1, the tangent line is horizontal and
more negative. The sequence of approximations Newton’s method fails.

does not converge, that is, Newton’s method fails.
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d
(c) , (d) y
A t + + t +
0] 1 3 5 x 0f 1 E 3 5 i x

If z1 = 3, then 2 = 1 and we have the same If 21 = 4. the tangent line is horizontal and

situation as in part (b). Newton's method fails Newton's method fails.

again.
(e) y If z; = 5. then 2 is greater than 6, x3 gets closer to 6, and

the sequence of approximations converges to 6. Newton’s

method succeeds!

3 —
5 fz)=24+2c-4 = f’(w):3w2+2‘somn+1:xn—%.Nowm:1 =
1+2—4 -1 (1.2) +2(1.2) — 4
=l-—=1-—=12 = =12- ~ 1. .
vz 3.1212 5 s 3(1.2)2 + 2 11797
_ .3 .2 1N a2 _ f(zn) 3 —x2 -1
6. f(.’I?)—:L‘ —zz-1 = f(:ﬂ)—3l' —2$,80$n+1—13n—f,(zn)—.CEn—~;w_%_2—x;'.
Nowzi =1 = ap=1-231"1_o o 2 -9 il = 1.625
! 2= 3-2 BEET R g g T
— 4 ’ _ 3 _ f(ﬂfn) _ .Tf;—20
1 f(z)=z*-20 = f(x)—4a:.soacnﬂ_xn—fl(wn)_mn_ =
24 —20 (2.125)* — 20
Nowz; =2 = z0=2— ——+ =212 = =2125 - ——F———— 2. .
' : 4(2)° s °T Tagamp SIS
8 f( _ 5 / 4 13,51-{—2
L f@)=a2"+2 = f'(z) =5z . 50 Tny = 0 — oo .Nowz, =-1 =
(-1)°+2 1 (-1.2)° +2
o = — ———:—l——:—_ = — —_——_— X —
2 5 (—1)° 5 12 = z3 1.2 5(—12) 1.1529.
8. fz)=2*+2+3 = f(z)=32"+150 7
ad + 7, +3
T4l = Tp — =—"""= Nowax; = —1
+1 322 +1 oW 1 = (~1.25.0)/ !
_1\3 _ < 1 —
N Gl o Gt - | 143 1 o 5 \ iy |
3(—1)2+1 341 1 0. J

Newton’s method follows the tangent line at (—1, 1) down to its
intersection with the z-axis at (—1.25.0), giving the second

approximation o = —1.25.
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10.

1.

12.

13.

14.

f@)=z*-2z-1 = f'(z)=42>—1.50 6
xn+1=mn—M.Nowx1:1 = f
43 —1
To=1-— 14_;1 =1- -1 = é Newton’s method follows the 2 AN
4-13 -1 3 3
tangent line at (1, —1) up to its intersection with the z-axis at (%,0). [

giving the second approximation zo = %.

To approximate z = /30 (so that z° = 30), we can take f(z) = z* — 30. So f'(z) = 32>, and thus,
3
z, —30 . .
Tntl = Tn — 32 Since ¥/27 = 3 and 27 is close to 30, we’ll use z; = 3. We need to find approximations

until they agree to eight decimal places. z; =3 = 2 & 3.11111111, z3 =~ 3.10723734,
T4 ~ 3.10723251 ~ x5. So ¥/30 ~ 3.10723251, to eight decimal places.

Here is a quick and easy method for finding the iterations for Newton’s method on a programmable calculator.
(The screens shown are from the TI-83 Plus, but the method is similar on other calculators.) Assign f(z) = 2* — 30
to Y1. and f'(x) = 3z to Y. Now store 1 = 3 in X and then enter X — Y1/Y2 — X to get z» = 3.1. By
successively pressing the ENTER key. you get the approximations x3, Z4. .. ..

Flokl Flotz Flots T
~Mi1Bx3-38
S - BN o 2 E
V=1 Sa11
“Ny= S. 18
“Ve= .18
MNe= 3.18
“We= [ |

In Derive. load the utility file SOLVE. Enter NEWTON (x*3-30,x, 3) and then APPROXIMATE to get
[3.3.11111111.3.10723733, 3.10723250. 3.10723250]. You can request a specific iteration by adding a fourth
argument. For example, NEWTON (x*3-30,x,3,2) gives [3,3.11111111, 3.10723733].

In Maple, make the assignments f := z — z"3 — 30;, g := ¢ — = — f(x)/D(f)(x);, and z:= 3...

Repeatedly execute the command z := g(z); to generate successive approximations.
In Mathematica. make the assignments f[z_] := "3 — 30, g[z_] := z — f[z]/f'[z]. and z = 3.
Repeatedly execute the command z = g[x] to generate successive approximations.

z}, — 1000
78,
agree to eight decimal places. 1 =3 = T2~ 2.76739173. x3 ~ 2.69008741, x4 ~ 2.68275645,

5 ~ 2.68269580 =~ zg. So m =~ 2.68269580. to eight decimal places.

flz) = 27 —1000 = f'(z)=T72% 50 Tpnt1 = Tn — . We need to find approximations until they

223 — 627, + 3zn + 1
6x2 — 122, + 3

need to find approximations until they agree to six decimal places. z1 = 2.5 = =2 = 2.285714,

T3 & 2.228824, x4 ~ 2.224765, T5 ~ 2.224745 = x¢. So the root is 2.224745, to six decimal places.

. We

fl@)=22°—62"+3z+1 = [(z)=062"-120+3 = Tnit1=2n—

vz, —4
4z3 + 1
T3 & 1.285346, x4 ~ 1.283784, x5 ~ 1.283782 = x6. So the root is 1.283782, to six decimal places.

f@y=z'+z-4 = [f(&)=42"+1 = Tp41=2Tn— o1 =15 = 22~ 1.323276,
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15. sinz = z2.50 f(z) =sinz —2®> = f'(z)=cosz—2z = Y

: 2
inc, — .
Tntl = Tn S Tn ™. From the figure, the positive root of

oS Tn — 2Tn £ 1 .
sinz=x2isnearl.z1 =1 = z2~ 0.891396. 3 ~ 0.876985, \‘/‘

4 = 0.876726 = x5. So the positive root is 0.876726. to six decimal

places.
16. 2cosx = z*, 50 f(z) = 2cosz —z* = f'(z) = —2sinz — 42° y

2co0s Tn — To . .
———" " From the figure. the positive root 1
—2sinz, — 4z3

of2cosz = z'isnear 1. 71 =1 = 12 ~ 1.014184, 0 1 x
3 ~ 1.013958 = z4. So the positive root is 1.013958. to six decimal

places.

= Tn4+l = Tn —

17. 3 From the graph, we see that there appear to be points of intersection near

= —0.7and z = 1.2. Solving z* = 1 + z is the same as solving
flx)y=2*-z-1=0.f(z) =2 -2z-1 = f(z)=42>-1,

:z:fl—:cn—l

-2 2 S0Tpy] =Ly — 2=~
l/ J i " 423 — 1

;= -07 r1 =1.2
T2 &~ —0.725253 z2 = 1.221380
3 ~ —0.724493 T3 ~ 1.220745

T4~ —0.724492 ~ x5 T4 ~ 1.220744 =~ x5

To six decimal places, the roots of the equation are —0.724492 and 1.220744.

18. 3 ~ From the graph. there appears to be a point of intersection near z = 0.6.
( Solving € = 3 — 2z is the same as solving f(z) = €* + 2z — 3 = 0.
f(z)=€e"4+22-3 = f'(z) =e"+2.50
Ty 2 n —
Tntl = T — LHA Nowz; =0.6 = z2~0.594213,
e*n +2
/ z3 ~ 0.594205 = 4. So to six decimal places, the root of the equation
1\ J 5 is 0.594205.
0
19. 3 . From the graph. there appears to be a point of intersection near z = 0.5.
\ Solving tan™! z = 1 — z is the same as solving
fz)=tan"'z+2-1=0. f(z)=tan ‘z+z2-1 =
-3 3 , 1 tan_lxn+zn— 1
= 1. ntl = Tp — .
\ (=) T4g2 Th0T =2 1/(1+22)+1
1 =05 = x2~0.520196, 5 ~ 0.520269 ~ 24. So to six decimal

J places. the root of the equation is 0.520269.
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20. 5 . From the graph. we see that there appear to be points of intersection near
z =—1.2and z = 1.5. Solving vz + 3 = 22 is the same as solving
flz)=2>-Vz+3=0.f(z)=2>-vVz2+3 =

1 2 -
f(z) =22 — ——=.50Tp41 = Tp, — In Zn +3 .
-3 3 2Vz +3 2z, — 1 /(2vzn + 3)
-1
r1 = —-1.2 X1 = 1.5
T2 ~ —1.164526 x2 &2 1.453449

T3 ~ —1.164035 ~ x4 T3 ~ 1.452627 =~ x4

To six decimal places. the roots of the equation are —1.164035 and 1.452627.

21. From the graph, there appears to be a point of intersection near z = 0.6. 2

Solving cos x = / is the same as solving f(z) = cosz — /T = 0.

f(z)=cosz—vx = f(z)=—sinz—1/(2/x).s0

2 m
COSTp — /Tn
Tntl = Tn — - .N =06 =
Tntl =X “sinzn —1/2 %) ow 1 H

T2 ~ 0.641928, z3 = 0.641714 =~ x4. To six decimal places, the root of -2
the equation is 0.641714.

22. From the graph, there appears to be a point of intersection near x = 0.7. 2
Solving tanx = v/1 — z2 is the same as solving
f(z) =tanz — V1 —-22=0. f(z) =tanz — V1 —-22 =

R
~—

m m
2 2
’ _ 2 _ tanzn—\/l—x%
fi(z) =sec®z+z/vV1— 22,50 Tnt1 = Tn — ISP by
21 =07 = 1z3=0.652356, x3 ~ 0.649895, x4 ~ 0.649889 ~ xs. -2

To six decimal places, the root of the equation is 0.649889.

23. S flz)=2%—a* —52° — 2 +4x+3 =
-2( S\ n3 f(z) = 5z* —4a2® — 152 — 22 +4 =
5 4 3 2
o — xy — bxy, — Ty + 4T, +3
T4l = Tn — 521 — 423 — 1522 — 2z, 1 4 . From the graph of f.
there appear to be roots near —1.4, 1.1, and 2.7.
-19
r1 = —-1.4 T, = 1.1 ry = 2.7
o ~ —1.39210970 2 ~ 1.07780402 T2 & 2.72046250
3 ~ —1.39194698 z3 ~ 1.07739442 r3 &~ 2.71987870
T4 & —1.39194691 = x5 T4 ~ 1.07739428 = x5 T4 & 2.71987822 ~ x5

To eight decimal places, the roots of the equation are —1.39194691. 1.07739428, and 2.71987822.
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24. 5 Solving z*(4 — 2?) = ——2% is the same as solving
T

4 8x

— / —_ _ 3
_25(/\ /\ ]25 f(x):4x2_m4_m_l_0.f(x)—8:v 4x —{———(3324_1)2
| dzh, —ap —4/(a} +1
[/ \/ \J Tntl = Tn — 8:1:nw— 4:31 n Smi(;x% +)1)2 . From the graph of f(z).

= there appear to be roots near z = +1.9 and z = £0.8. Since f is even. we

only need to find the positive roots.

xr1 = 0.8 r1 = 1.9
T2 ~ 0.84287645 T2 ~ 1.94689103
3 ~ 0.84310820 T3 ~ 1.94383891

x4 ~ 0.84310821 ~ x5 T4 ~ 1.94382538 = x5
To eight decimal places, the roots of the equation are £0.84310821 and +1.94382538.

25. 3 . From the graph. y = z°v/2 — z — 22 and y = 1 intersect twice. at
~-2andatz~ -1 f(z)=2*V2 -z -22-1 =
f’(x):w2~%(2—a: )V (—1-22)+ (2 -z —2?)V? 2
1z(2-z-2°)” 1/2[:5( 1-2z)+4(2 -z —2°)]
N J _ z(8 — 5z — 62°)
- 2/C+a)(l-2)

|
w
S
Il

222 -z, —x2 -1 ) ) , ) . .
SO Tnt1 = Tn — . Trying z1 = —2 won't work because f'(—2) is undefined, so we’ll

Tn (8 — B, — 622)
2V/(2+za)(1 — 2n)

try z; = —1.95.
r1 = —1.95 Iry = —08
T2 ~ —1.98580357 T2 ~ —0.82674444
x3 ~ —1.97899778 3 ~ —0.82646236
T4 ~ —1.97807848 T4 ~ —0.82646233 ~ z5

r5 ~ —1.97806682
Te ~ —1.97806681 ~ 7

To eight decimal places, the roots of the equation are —1.97806681 and —0.82646233.

26. 4 From the equations y = 3 sin(z?) and y = 2z and the graph, we deduce
that one root of the equation 3sin(z?) = 2z is z = 0. We also see that the
5 graphs intersect at approximately z = 0.7 and z = 1.4.
\/ f(z) =3sin(z?) =22 = f'(z) = 3cos(z?) -2z — 2. 50
o 3sin(x2) — 2z,
-4 T e, cos(z3) — 2’

x1 =0.7 1 =14

z2 ~ 0.69303689 T2 ~ 1.39530295

T3 ~ 0.69299996 ~ z4 3 ~ 1.39525078

T4 ~ 1.39525077 = z5
To eight decimal places, the roots of the equation are 0.69299996 and 1.39525077.
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21.

28.

29.

30.

31.

32.

2
3 From the graph. we see thaty = e™* and y = z? — z intersect

twice. Good first approximations are z = —0.5 and z = 1.1.

flz) = e _g24hgp = fl(z) = —2ze™*" — 2z + 1. 50

—z2 2
-2 2 Tng1 = Tn — e " —211371 + T, .
—2zpe %n — 2z, + 1
-1
xry = —-0.5 r1 = 1.1
T2 ~ —0.51036446 z2 ~ 1.20139754
z3 ~ —0.51031156 =~ x4 x3 ~ 1.19844118

T4 ~ 1.19843871 =~ x5
To eight decimal places, the roots of the equation are —0.51031156 and 1.19843871.

2 From the graph, y = ln(4 - x2) and y = z intersect twice, at
( /— 1 r~-2andatz~ 1. f(z)=In(4—2°) —z =
-3 3
, -2 ln(4 — mi) — Tn
= —— — 1.S0Tn41 = Tn — .
F@) = g0 ~ Lot =20 — 1
Trying z1 = —2 won’t work because it’s not in the domain of
4 Y= 111(4 — :cQ). Trying z1 = —1.9 also fails after one iteration
because the approximation 2 is less than —2. We try 1 = —1.99.
r1 = —1.99 xr, = 1.1
zo = —1.97753026 T2 &~ 1.05864851
r3 ~ —1.96741777 x3 ~ 1.05800655
x4 = —1.96475281 x4 ~ 1.05800640 ~ =5
5 ~ —1.96463580
Te ~ —1.96463560 ~ X7

To eight decimal places. the roots of the equation are —1.96463560 and 1.05800640.

(@) f(z) =2 —a = f'(z) = 2z.s0 Newton’s method gives

o g, _Tmza_ ool e 1 o 1(  a
Il = T I T I T e 2 T oy, 2\ T )

(b) Using (a) with @ = 1000 and x; = V900 = 30. we get x2 =~ 31.666667, x3 ~ 31.622807. and
x4 ~ 31.622777 ~ z5. So /1000 ~ 31.622777.
1/xn —a
—1/x2
(b) Using (a) with @ = 1.6894 and z; = % = 0.5, we get z2 = 0.5754, z3 ~ 0.588485. and
T4 = 0.588789 ~ x5. S0 1/1.6984 ~ 0.588789.

2

1
(a) f(z) = % —a = fl(z)= 2 S0 Tn41 = Tn — =z, + T, — az? = 2z, — az3.

fz)=2%-3z+6 = f'(z)=32z%-3. Ifz; = 1. then f'(z1) = 0 and the tangent line used for
approximating z2 is horizontal. Attempting to find x2 results in trying to divide by zero.
2 —zn—1

Bor=1 & 22-z2-1=0.fz)=2>-z-1 = f(z)=32"—1S0Tnp1 = Tn — 322
3 — 1

(a) z1 = 1.2 = 1.5, 3 =~ 1.347826, x4 ~ 1.325200. x5 ~ 1.324718 =~ x¢
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(b) z1 = 0.6. z2 = 17.9. 23 ~ 11.946802. T4 =~ 7.985520. z5 ~ 5.356909. x6 ~ 3.624996, z7 ~ 2.505589,
zg ~ 1.820129, z9 ~ 1.461044, z10 ~ 1.339323. z11 ~ 1.324913. x12 = 1.324718 = 113

(¢) z1 = 0.57. z2 =~ —54.165455. T3 ~ —36.114293. x4 =~ —24.082094. x5 ~ —16.063387. v6 ~ —10.721483.
xz7 & —7.165534, 3 ~ —4.801704, g ~ —3.233425. z19 ~ —2.193674, z11 ~ —1.496867,
12 ~ —0.997546. T15 ~ —0.496305. 14 =~ —2.894162, 15 =~ —1.967962, 16 ~ —1.341355.
17 ~ —0.870187, z18 &~ —0.249949. 119 = —1.192219, 220 =~ —0.731952. z21 =~ 0.355213.
Tz & —1.753322, x23 &~ —1.189420. x24 ~ —0.729123, 25 =~ 0.377844. x26 =~ —1.937872.
o7 = —1.320350. z28

Q

—0.851919, x29 ~ —0.200959, x30 ~ —1.119386, 31 ~ —0.654291,
x32 & 1.547010, 233 ~ 1.360051, x34 ~ 1.325828, x35 ~ 1.324719. x36 ~ 1.324718 = x37.

(d) ! From the figure, we see that the tangent line corresponding to z1 =1
( 0 57 XO 6_:‘ ‘// results in a sequence of approximations that converges quite quickly
-1 2 (x5 = x6). The tangent line corresponding to z; = 0.6 is close to
/\ ! being horizontal, so x2 is quite far from the root. But the sequence
x =057 \_ still converges — just a little more slowly (z12 ~ x13). Lastly, the
- 0.6 ) tangent line corresponding to z; = 0.57 is very nearly horizontal, x>
-2

is farther away from the root. and the sequence takes more iterations

to converge (T3¢ & T37).

33. For f(z) = z'/*., f'(z) = 127%/% and 3
1/3

f(xn) z/
Tn+l1 = Tp — 7 :w,l—ﬁzxn—Sznz—an.

f(zn) 1.2/

3o X -1
. . . . = 3

Therefore, each successive approximation becomes twice as large as the 205/ 2
previous one in absolute value, so the sequence of approximations fails to
converge to the root, which is 0. In the figure, we have z; = 0.5.

z2 = —2(0.5) = —l.and 3 = —2(—1) = 2.

34. According to Newton’s Method, for z,, > 0

. v
_ /_mn B B ‘ V
Tntl = Tp Vo) = Zn — 2y = —Tn and for z, < 0.

-X, 0—"x, x
—/—zn
x =Tn — ————x =Zp — [—2(— = —Zn.
n+1 n Ve ZTn — [—2(—zn)] Tn. SO we can
see that after choosing any value z; the subsequent values will alternate
between —z; and x1 and never approach the root.
35. (a) f(z) = 32* — 282° + 62% + 24 = f'(z) =122% — 842> + 122+ 24 =
!/
f"(x) = 36z — 168z + 12. Now to solve f'(z) = 0. try z; = I = zp=z— ]{”((ml)) = ; =
1

z3 ~ 0.6455 = 1x4~0.6452 = 5=0.6452. Nowtryz; =6 = x,=7.12 =
z3 ~6.8353 = 1x4~6.8102 = x5~ 6.8100. Finally tryz; = —-0.5 = z2~x~-0457T1 =

z3 ~ —0.4552 = x4~ —0.4552. Therefore. z = —0.455. 6.810 and 0.645 are all critical numbers correct
to three decimal places.
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(b) f(—=1) =13, f(7) = —1939. f(6.810) ~ —1949.07. f(—0.455) ~ —6.912. f(0.645) ~ 10.982. Therefore.
f(6.810) ~ —1949.07 is the absolute minimum correct to two decimal places.

36. f(z) =2° +sinz = f'(z) =2z + cosz. f'(z) exists for all . so to 10
find the minimum of f. we can examine the zeros of f’. From the graph of /
f'. we see that a good choice for z; is 1 = —0.5. Use g(z) = 2z +cosz '° f 10
and ¢'(z) = 2 — sin z to obtain z2 ~ —0.450627, /

w3 ~ —0.450184 ~ 4. Since f"(z) = 2 — sinz > 0 for all z. -1
f(—0.450184) ~ —0.232466 is the absolute minimum.

4

37. From the figure. we see that y = f(z) = e“*® is periodic with period 2.

[/<’ \. / \ Y /\ To find the z-coordinates of the IP, we only need to approximate the zeros

—10 \/M\/M\/ 10 ofy” on [0,7]. f'(z) = —€*"sinz =
Y

f"(z) = e**(sin® z — cosz). Since e>** # 0, we will use Newton’s

-4 method with g(z) = sin® z — cosz, g'(x) = 2sinx cosz + sin . and

1 = 1. z2 = 0.904173, 3 =~ 0.904557 =~ x4. Thus.
(0.904557,1.855277) is the IP.

38. 2 f(z) = —sinz = f'(z) = —cosz. Atz = a. the slope of the
{ tangent line is f'(a) = — cos a. The line through the origin and (a, f(a))

—2w 27 —sina — 0 S .
isy = ———-O—x If this line is to be tangent to f at z = a, then its
a

—sina

-2 slope must equal f'(a). Thus. = —cosa = tana=a.

To solve this equation using Newton's method. let g(z) = tanz — z,
tanz, —x

™ with z; = 4.5 (estimated from the figure). z2 &~ 4.493614.

/ 2
z) =sec’x — 1,and Tp+1 = Tn —
g'(z) nt " sec?z, —1

z3 ~ 4.493410, T4 ~ 4.493409 =~ x5. Thus. the slope of the line that has the largest slope is f'(z5) ~ 0.217234.
39, 56.000

The volume of the silo, in terms of its radius, is

V(r) = nr*(30) + 3 (§7r?) = 30mr? + $mr.

¥ = 15.000 From a graph of V, we see that V(r) = 15.000 at r ~ 11 ft. Now we use
L / J Newton’s method to solve the equation V (r) — 15,000 = 0.
0 20
dv 30mr? + 2mry — 15,000

= = 60mr + 2772, 50 Tyl = Tn —
+

. Taki
dr 607r, + 27r2 axing

r1 = 11, we get 7o =~ 11.2853, r3 ~ 11.2807 = r4. So in order for the

silo to hold 15.000 ft® of grain. its radius must be about 11.2807 ft.
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40. Let the radius of the circle be r. Using s = 0. we have 5 = rf and so r = 5/6. From the Law of Cosines we get
2=r2472_2.r.7.cosf & 16=2r(1—cosf) = 2(5/8)° (1 — cos¥).
Multiplying by 62 gives 1662 = 50(1 — cos 8). so we take
£(6) = 1662 + 50 cos 8 — 50 and f'(6) = 3260 — 50sin 0. The formula 2

1662 + 50 cos 0, — 50 ( f/ ]
for Newton’s method is 41 = 0 — + o0 cos . From the ,

326, — 50sin 6y, 0 3
graph of f, we can use 61 = 2.2, giving us 62 ~ 2.2662,

03 ~ 2.2622 = 04. So correct to four decimal places. the angle is
2.2622 radians ~ 130°. -15

R N —
41. In this case, A = 18,000, R = 375, and n = 5(12) = 60. So the formula A = N [1—(1+1)""] becomes

18,000 = 375 1-(1+2)"%] & 48z=1-(1+2)"% [multiply each term by (1 +2)*] «
T

48z(1 4+ )% — (14 2)%" +1 = 0. Let the LHS be called f(z). so that
f'(z) = 48z(60) (1 4 ) + 48(1 + )% — 60(1 + x)*°
=12(1 4 z)°° [42(60) + 4(1 + z) — 5] = 12(1 + z)°° (244 — 1)

48z (14 2,)% — (14 2.)" +1
12(1 4 z,)°° (2442, — 1)
estimate for z = 7. So let z1 = 1% = 0.01, and we get 2 ~ 0.0082202. z3 ~ 0.0076802, 4 ~ 0.0076291.

z5 ~ 0.0076286 ~ x¢. Thus, the dealer is charging a monthly interest rate of 0.76286% (or 9.55% per year,
compounded monthly).

Tn+l = Tn . An interest rate of 1% per month seems like a reasonable

42 (@) pz)=2"-2+r)z*+(1+2r)2* —(1-r2® +20-rz+r—-1 =
p'(z) = 5z* — 4(2 + 1)z + 3(1 + 2r)2? — 2(1 — )z + 2(1 — 7). So we use

xy — (2+7)zh + (1 +2r)2d — (1 — )22 +2(1 —r)zn +7— 1

Ertt = En S5zp —4(2+ 1)z +3(1+2r)22 —2(1 —r)zn +2(1 — 1)

. We substitute in the value

7 & 3.04042 x 1078 in order to evaluate the approximations numerically. The libration point L, is slightly
less than 1 AU from the Sun. so we take 21 = 0.95 as our first approximation, and get o = 0.96682,

z3 ~ 0.97770. z4 ~ 0.98451. x5 ~ 0.98830. 26 ~ 0.98976, z7 ~ 0.98998. x5 ~ 0.98999 ~ zg.

So. to five decimal places, L; is located 0.98999 AU from the Sun (or 0.01001 AU from Earth).

(b) In this case we use Newton’s method with the function
pe) —2re® =2 — 2+ )zt + (1+2r)2° — A +r)2? +20—-r)z+r—-1 =
[p(x) — 2rz?]" = 52* — 4(2 + )z + 3(1 + 2r)2% — 2(1 + r)z + 2(1 — 7). So

z — (2+7r)zh + (L+2r)2d — (1 +7)22 +2(1 = r)an +7 - 1
S5ch —4(2+7)xd +3(1+2r)z2 —2(1 +7r)zn +2(1 — 1)

r A 3.04042 x 1075, Ly is slightly more than 1 AU from the Sun and, judging from the result of part (a).

T4l = Ty — . Again, we substitute

probably less than 0.02 AU from Earth. So we take 1 = 1.02 and get 2o ~ 1.01422, z5 ~ 1.01118,

z4 = 1.01018. z5 ~ 1.01008 ~ 6. So. to five decimal places. Lo is located 1.01008 AU from the Sun (or
0.01008 AU from Earth).
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410 Antiderivatives

2
+1 $1+1

2+1 81-{—1

Check: F'(z) =2-32” —4-22+3+0 =62 — 8z + 3 = f(z)

1. f(z) = 62> —82+3 = F(z)=6= +32+C =223 422+ 32+ C

2 f(z)=4+2*-52° = F(z) =4z + 32° — 22+ C

m3+1 .'135+1 $7+1

3 flz)=1—-23+52°-32" = F(z)=z— 5 _ _ .1 3.8
f(z) z x () == 3+1—|—5+1 37+1+C v— 3zt +22°- 3254+ C

4 f(z) =2 +42"°+8 = F(z)= L2+ Lz +8+C

p1/4+1 £3/4+1

5. f(z) =5zY*—72%* = F(z)=5 -7 C=5%_ _-%2 __ — 4x5/4 _ 457/4
f(z) (z) T %+1+ 5/4 7/4—|—C x 4z’ +C

6. f(z) =2z +3z"" = F(z)=2"+22>"+C=2>+ 1991‘2'7 +C

1. f(z) =6z — ¥z =622 —2/° =

P12+ p1/641 32 L7/6 2 6.1/
Flz)=6%— -2 — 4c=62- -2 _4Co=452_2¢
(z) e é+1+ 6375 ~ 75 TO=1 8275+ C
RO
8 flz)= Vol + YVt =234 + 2 = F(w):7—/4+ 73 +C =424+ 3273 4 C
10z~° 5 .
10 01:8 +01=—F+Cl if <0
9. f(z) = i 10z ~° has domain (—o0,0) U (0, 00), so F(z) = _5
——+Cy if >0
428

_43 6
10. g(z) = 5—2:—2—2— = 5275 — 4273 4 2 has domain (—o0,0) U (0, 00), so
z® oz’ 1,2
5——4—+2w+C'1 +=5+22+C1 ifz <0
_ -5 Tzs g2
G(z) = ) 5
z
4 4 1/2
11-f(u):%§‘/a:%+3“2 =u?+3u%? =
u3 u—3/2+1 1 w12 1 6
F(u):?-i- mﬂ-c 3 3+3_1/2+C:§u3—ﬁ+0

12. f(z) = 3e® +Tsec’z = F(x)=3e” + Ttanz + Cy on the interval (nm—Z,nm+ %),
13. g(6) = cos§ — 5sinf = G(A) =sin@ — 5(—cosh) + C =sind +5cosd +C

sin @ 1 sin 0 . ,, =
14. h(0) = o0~ cosd cosf — secOtanf = H() =sech + C, on theinterval (nm — 5, nm+ 5) .




15.

16.

17.

18.

19.

20.

21.

23.

24.

25.

26.

21.

28.

_ 5 -
f(x) =2z +5(1 — 2?) 1/2=2x+\/—1—:_;2- = F(z)=2"+5sin
2 : 122 + o+ Injz|+ C
f(m):Lm:x+1+_ = F(z)= ?2 21
z z sz° +z+1njz| + Co
5 6
f@) =52t -2" = F@)=5%-2%+C=s"—§a"+C.

F0)=4 = 0°-1.0°+C=4 = C=4s0
F(z)=2° — %acﬁ + 4. The graph confirms our answer since f(z) = 0
when F has a local maximum, f is positive when F' is increasing, and f is

negative when F’ is decreasing.

- 3

=4-3(1+2%) " =4- ——
f(x) ( tz ) 1+ z2
F(z)=4z—3tan"'z+C. F(1)=0 = 4-3(3)+C=0 =
C =32 —4,50 F(z) =4z —3tan™ "z + % — 4. Note that f is positive
and F' is increasing on R. Also, f has smaller values where the slopes of

the tangent lines of F’ are smaller.

.733
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ey

if <0
if >0

2
f(z) = 6z +122° = f’(a:):6-%+12-—+C:3z2+4z3+C =

3
z®

flz)=3-73

4
+4- % +Czx+ D =2+2*"+Cz+ D [Cand D are just arbitrary constants]

ffl@)=2+2+2° = fll@y=2z+ 3" +i"+C = flz) =2+ %2°+ 2%+ Cz+ D

ffl@)=1+2*5 = f(a)=z+22°°+C >
f(z) =

=

2?43 2"+ Co+ D=122+ B35 L Cz+ D

. f'(z) =cosz = f'(z)=sina+C = f(z)=—cosz+Cz+D

f')y=e" = f't)=e'+C = f(t)=e'+Ct+D = f(t)=e' +1C>+Dt+E

ff@)y=t-vt = ['(t)=3t2-224+C = f()=i- A2+ Ct+D =

ft)=4t* — B2+ 10t + Dt+ E

fz)=1-6z = f(@)=z -3z +C. f(0) = Cand f(0) =8 = C =850 f(z) =z — 3z +8.

fll@)=82"+122+3 = f(z)=22"+624+32+C. f1)=11+Cand f(1) =6 =

114+C=6 = C=-550f(z)=2x"+62>+3z—5

f'(x) = V&6 + 5z) = 622 + 52%/2 = f(z) =42%/% +2:%/% 4 C.
f()=6+Cand f(1) =10 = C =4.s0 f(z) = 42%/% + 2252 1 4.

fl(x) =2z -3/z* =22 -327* = f(z) =2®+2"%+ C because we're given that z > 0.

f(A)=2+Cand f(1) =3 = C =150 f(z) =x>+1/2%+1.
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29, f'(t) = 2cost +sec’t = f(t) =2sint + tant + C because —7/2 < t < /2.
f(3)=2(v3/2) +V3+C=2V3+Cand f(Z) =4 = C=4-2V3.50
f(t) =2sint +tant +4 — 2/3.

W fr) =32 = f(x)_{~3/x+01 Y - srai—0 - -

=3/z+C if <0
-3/z+3 if x>0
F(-1)=3+Co=0 = Cp=-3.Sof(z)= .
{—3/3:—3 if z<0

3N fl(z) =2/r = f(z)=2In|z|+C = 2In(—z) + C (since z < 0). Now
f(-1)=2In14+C=2(0)+C=7 = C =7 Therefore, f(z) =2In(—z)+ 7.2 <0.

32 f(z)=4/V1I-22 = f(x)=4sin"'z +C. f(%—):4Sin_l(%)+C:4-%+Candf(%):1 =
%"—FC:I = C:l—%".sof(w):4sin_1m+ -2

B f(r) =242 +224+10 = f'(2)=82>+2*+10c+C. f(1)=8+1+10+Cand f'(1)=-3 =
194C=-3 = C=-22.50f'(x) =8z + z* + 10z — 22 and hence,
fl@)=22"+12® + 52— 222+ D. f(1) =2+ +5-22+ Dand f(1) =5 = D=22-1=71%,
sof(a:):2x4+§x3+5m2—22$+5—;’.

M. () =4—-6x—402° = f'(z) =4z -3z -102*+C. f(0)=Cand f'(0)=1 = C=1.s0
f'(z) = 4z — 3z? — 10z* 4 1 and hence, f(z) = 22> —2® — 22° + 2+ D. f(0) = Dand f(0) =2 =
D=25s0f(z)=2c*—2%-22° +z+2.

35 f(f) =sinf+cosf = f'(0) =—cosf+sinf+C. f'(0)=-1+Candf(0)=4 = C=55s0
f'(0) = —cosf + sin @ + 5 and hence, f(0) = —sinf — cos + 50 + D. f(0) = —1+ D and f(0) =3 =
D =4 50 f(f) = —sinf — cos 0 + 50 4 4.

3. f(t)=3/Vi=3t"Y2 = f(t)=6"2+C. f(4)=12+Cand f'(4) =7 = C=-550
f'(t) = 6t/2 — 5 and hence, f(t) = 4t*/> — 5t + D. f(4) =32—-20+ Dand f(4) =20 = D =8.s0
f(t) = 4t3/? — 5t + 8.

3. f'(z)=2-12¢ = f(z)=22-62"+C = f(z)=2"—-20"+Cz+D.
f(0O)=Dand f(0)=9 = D=9 f(2)=4-16+2C+9=2C—-3and f(2) =15 = 20=18 =
C =950 f(z)=a? 22> +9z+9.

8. f(z) =20z° + 128> +4 = fl(z) =52 +42® +4a+C = f(z)=2°+z" +2 +Cz+D.
fO)=Dand f(0)=8 = D=8 f(1)=1+1+24+C+8=C+12and f(1)=5 = C=-T,s0
f(z) =2° +z* + 22> — Tz + 8.

39. f'(z) =2+cosz = f'(z)=2z+sinz+C = f(z) =2®> —cosz+Cz + D. f(0) = -1+ D and
fO)=-1 = D=0 f(%)=7%/4+(Z)Cand f(2) =0 = (5)C=-7°/4 = C=-3F.50
f(z) =2 —cosz — (§)z

40. f"(t) = 2e’ + 3sint = f'(t) =2e' —3cost+C = f(t) = 2¢e* —3sint+ Ct+ D. f(0) =2+ D and
2 —2e”
T

f(O):O = D:~2,f(Tr):Qe’T+7rC—2and_f(7r):0 = 7C=2—-2" = (C= . SO

2 - 2e”

f(t) = 2e* — 3sint + t—2.
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42.

44.

45,

47.
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fllx)y=2"%2>0 = f(z)=-1/z+C = f(z)
(sincex >0). f(1)=0 = C+D=0andf(2)=0 = -In2+2C+D=0
—In24+2C -C =0 [since D=—-C] —In2+C=0 = C=In2andD = —1In2.

So f(z) = —Inz + (In2)z — In2.

—lnjz|+Cz+D=—-Inz+Cx+D
=

=

f"(z) =sinz = f"(z)

f'(z)=—cosx+2 = f(z)=-sinz+22+D = 1=f(0)=D = f(r)=-sinz+2z+1

—cosz+C = 1=f'0)=-1+C = C=2.50

= f(z)=cosz+z*+z2+E = 1=f0)=14+E = E=0.50f(z)=cosz+z*+z.

. Given f'(z) = 2z + 1. we have f(z) = 2> + z + C. Since f passes through (1,6).

f)y=6 12414C=6 = C =4. Therefore. f(x) =2+ z+4and f(2) =22 +2+4 = 10.

=

flz) =2 = f(x):%w“—{-C. z+y=0 = y=-z = m=-1Nowm=f'(z) =

3

—1=2" = z=-1 =y =1 (from the equation of the tangent line), so (—1, 1) is a point on the graph

of f.From f,1=%(-1)*+C = C = 3. Therefore. the function is f(z) = 3z* + 3.
b is the antiderivative of f. For small z, f is negative. so the graph of its antiderivative must be decreasing. But
both a and c are increasing for small z. so only b can be f’s antiderivative. Also, f is positive where b is increasing,

which supports our conclusion.

. We know right away that c cannot be f’s antiderivative, since the slope of c is not zero at the z-value where f = 0.

Now f is positive when a is increasing and negative when a is decreasing, so a is the antiderivative of f.

The graph of F will have a minimum at 0 and a
maximum at 2, since f = F” goes from negative

to positive at z = 0, and from positive to negative

48. The position function is the antiderivative of the
velocity function, so its graph has to be horizontal

where the velocity function is equal to 0.

atx = 2. s

0 t
¥
N 2 ifo<z<l1 2+C f0<z<l
N fllz) =<1 ifl<zx<2 = fz)={z+D ifl<z<2
-1 if2<z<3 —z+FE if2<z<3

f(0)=-1 = 20)+C=-1 = C = —1. Starting at the point

(0, —1) and moving to the right on a line with slope 2 gets us to the point

(1,1). The slope for 1 < z < 2 is 1. so we get to the point (2, 2). Here we

have used the fact that f is continuous. We can include the point z = 1 on

either the first or the second part of f. The line connecting (1,1) to (2,2) is y = z. so D = 0. The slope for
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2<zr<3is—l.sowegetto(3,1). f83)=1 = -3+E=1 = FE =4. Thus,

2c -1 if0<z<1
flzy=<z if l<z<2
—z+4 if2<zx<3

Note that f’(z) does not existat z = 1 orat z = 2.

50. (a) — (b) Since F'(0) = 1, we can start our graph at (0, 1). f has a minimum at about

x = 0.5. so its derivative is zero there. f is decreasing on (0, 0.5). so its

derivative is negative and hence, F is CD on (0, 0.5) and has an IP at

-1 4 x =~ 0.5. On (0.5, 2.2). f is negative and increasing (f’ is positive), so F is
u decreasing and CU. On (2.2, 00). f is positive and increasing. so F is

increasing and CU.

0 1\/ x
©) flz) =2z -3z = (d) 3
F(z) :m2—3v§:c3/2+0. F(0) = C and
Fl0)=1 = C=1,5s0 \
F(z) =% - 2252 + 1. —1 < 4
A _2 S/
51. f(z) = sin(z?), 0 <z <4 52. f(z) =1/(z* + 1)

051 -2 0 2 ¥




53.

55.

56.

51.

-1

[ 8]

k|

+//77\\\—=/ [ |||
///7—=\\—/ [ [

f(z)

0.5
1.0
1.5
2.0
2.5
3.0

3.5
4.0
4.5
5.0
5.5
6.0

—0.100
—0.189
-0.217
—0.192
—0.128
—0.047

f(=z)

+0.2
+0.4
+0.6
+0.8
*1.0
+1.2
+1.4
+1.5

0.041
0.169
0.410
0.824
1.557
3.087
8.117
21.152

0.4

IS@
%

54.

, (=2}
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1-7117--=711/7s=z=,F

10F-/7777==217pf--~

1-7/1/s==21/ff - ==~
Y7117 21ftr-=2
$-7/11 /o= fl /==

T/ Iff =211 ==

22 ,7f)e—=r117--2

s SR IR SN
1-J117-6-7714¢---14x

3=/ /1) r==r )=

1-7/1/===711/7-=7

We compute slopes [values of f(z) = (sinz)/z for

0 < z < 2] as in the table [lim,_, o+ f(z) = 1] and draw a

direction field as in Example 6. Then we use the direction

field to graph F starting at (0, 0).

y
2

/S S~ NN~~~
VA A AV Ay = =~ N~ ~ =
VAV 22N
/! S s -~ NN~ F
I IS e —~~N~~—
\t+ 7 /7 /7=~~~ —
/NS S S =~ NN~~~
Wl /S s — N~ NN~~~ —
/S S S —~ NN~ ~ =
/! S S S =~ NN~~~ —
0 2 4 6 x

We compute slopes [values of f(z) = z tanz for —7/2 < & < 7/2] as in the
table and draw a direction field as in Example 6. Then we use the direction field to
graph F' starting at (0, 0) and extending in both directions. Note that if f is an even

function, then the antiderivative F that passes through the origin is an odd function.

Remember that the given table values of f are the slopes of F at any z.

For example. at z = 1.4. the slope of F'is f(1.4) = 0.
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58. (a) P (b) The general antiderivative of f(z) =z~ 2 is
2 F(z) = {*1/1: TG <0 since f(z) is not defined
g —1/z+Cy if >0
; x at z = 0. The graph of the general antiderivatives of f(z) looks
; like the graph in part (a), as expected.
-

59, v(t) = s'(t) = sint —cost = s(t) = —cost—sint+C.s(0)=—-1+Cands(0)=0 = C=1.s0

s(t) = —cost —sint + 1.

60. v(t) = s'(t) = 1.5V = s(t)=t¥2+C.5(4) =8+ Cands(4) =10 = C=2s0s(t)=t>+2.
Bl a(t) =v'(t) =t —2 = o(t) =1t —2t+C.v(0)=Candv(0)=3 = C=3s00(t)=3t"—-2t+3
and s(t) = 2t* —t* +3t+ D. s(0) = Dand s(0) =1 = D=1ands(t) = 3t> =t + 3t + 1.
62. a(t) = v'(t) = cost +sint = wv(t) =sint—cost+C = 5=0v(0)=-1+C = C=6.s0
v(t) =sint —cost+6 = s(t)=—cost—sint+6t+D = 0=s(0)=-1+D = D=1-s0
s(t)
63. a(t) = v'(t) = 10sint + 3cost = w(t) = —10cost +3sint+C =
s(t) = —10sint — 3cost + Ct + D. s(0) = =3+ D =0and s(27) = -3+ 27C+ D =12 = D = 3and

Il

—cost —sint + 6t + 1.

C:%.Thus.s(t)=—1OSint—BCost+%t+3.
60. a(t) = v'(t) =10+ 3t — 3> = o(t) =10t + 22 —3+C = s(t) =5+ 3t° — ;' +Ct+D =

0=s(0)=Dand10=5(2) =20+4-4+2C = C=—5s0s(t)=—5t+5+3t° — ;.
65. (a) We first observe that since the stone is dropped 450 m above the ground. v(0) = 0 and s(0) = 450.
V() =a(t)=-98 = wv(t)=-98t+C. Nowv(0)=0 = C=0.s00(t)=-98 =
s(t) = —4.9t> + D. Last. s(0) =450 = D =450 = s(t) =450 — 4.9t%.

(b) The stone reaches the ground when s(t) = 0. 450 —4.9t> =0 = > =450/4.9 =
t1 = 1/450/4.9 = 9.58 s.

(c) The velocity with which the stone strikes the ground is v(t1) = —9.8 450/4.9 ~ —93.9 m/s.

(d) This is just reworking parts (a) and (b) with v(0) = —5. Using v(t) = —9.8t + C.v(0)=-5 =
0+C=-5 = u(t)=—98t—5 Sos(t)=—4.9t>—5t+ Dands(0) =450 = D =450 =
s(t) = —4.9t> — 5t + 450. Solving s(t) = 0 by using the quadratic formula gives us
t= (5+/8845)/(-9.8) = t1~9.09s.

66. v'(t) =a(t)=a = v(t)=at+Candvo=v(0)=C = v(t) =at+vo =
s(t) = %at2 +vwt+D = so=s0)=D = s(t)= %at2 + vot + S0
67. By Exercise 66 with a = —9.8, s(t) = —4.9t> + vot + so and v(t) = ' (t) = —9.8t + vo. So
[v(£)]2 = (—9.8t + v0)® = (9.8)* £ — 19.6vot + v§ = v§ + 96.04t” — 19.6vot = v —19.6(—4.9t% + vot).

But —4.9¢2 + vt is just s(t) without the so term; that is, s(t) — so. Thus, [v(t)]* = v§ — 19.6 [s(t) — sol.



68.

69.

10.

n

12.
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14.
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For the first ball, s1(t) = —16t> + 48t + 432 from Example 8. For the second ball. a(t) = —32 =
v(t) = =32t +C.butv(l) = -32(1)+C =24 = C =56.s0v(t) =-32t+56 =
s(t) = —16¢> + 56t + D. but s(1) = —16(1)> + 56(1) + D =432 = D = 392.and
s2(t) = —16t> + 56t + 392. The balls pass each other when s1(t) = s2(t) =
—16t> 4+ 48t + 432 = —16t> + 56t + 392 < 8t=40 <« t=5s.
Another solution: From Exercise 66. we have s1(t) = —16t> + 48t 4 432 and s2(t) = —16t% + 24t + 432.
We now want to solve s1(¢) = sa(t — 1) = —16t> 448t +432 = —16(t — 1)> +24(t — 1) + 432 =
48t =32t — 16+ 24t —24 = 40=8t = t=>5s.
Using Exercise 66 with a = —32. vo = 0, and so = h (the height of the cliff ). we know that the height at time ¢ is
s(t) = —16t> + h. v(t) =s'(t) = —32tandv(t) = =120 = —32¢t=-120 = ¢t =3.75, 50
0==s(3.75) = —16(3.75)2 + h = h = 16(3.75)% = 225 ft.
(@ Ely" =mg(L — )+ 3p9(L —2)* = Ely' =—img(L—=z)* —1pg(L-2)*+C =
Ely = ¢mg(L — z)* + 2 pg(L — z)* + Cz + D. Since the left end of the board is fixed. we must have
y =y =0whenz = 0. Thus, 0 = —imgL? — éng:i +Cand 0= tmgL® + ing‘l + D. It follows that
Ely = gmg(L —2)* + 5;p9(L — 2)* + (3mgL® + 3pgL®)z — (§mgL’® + J3pgL*) and
fl@)=y= % [5mg(L —2)* + 35pg(L — 2)* + (3mgL® + §pgL®)x — (2mgL® + % pgL?)]
(b) f(L) < 0, so the end of the board is a distance approximately — f(L) below the horizontal. From our result in
(a). we calculate

-1
—f(L) = g7 [3mgL® + §pgL® — §mgL® — 5;pgL*]

=103 a1 pardy — 9L (m pL
E(smgL-!-gng)— i 3+8

Note: This is positive because g is negative.

Il

Marginal cost = 1.92 — 0.002z = C'(z) = C(z) = 1.92z — 0.001z> + K. But

C(1) =192-0.001+ K =562 = K = 560.081. Therefore. C(z) = 1.92z — 0.001z* + 560.081 =
C(100) = 742.081. so the cost of producing 100 items is $742.08.

Let the mass, measured from one end. be m(z). Then m(0) = 0 and p = ili—m =z = m@) =22 +C
T

and m(0) = C = 0, so m(z) = 2 /z. Thus. the mass of the 100-centimeter rod is m(100) = 21/100 = 20 g.
Taking the upward direction to be positive we have that for 0 < ¢ < 10 (using the subscript 1 to refer to
0<t<10)ai(t)=—(9—-09¢t) =vi(t) = wvi(t) = —9¢+ 0.45t> + vy, but v1(0) =vo =-10 =
vi(t) = =9t +0.45t* — 10 = 51(t) = s1(t) = —2¢% + 0.15t> — 10t + so. But 51(0) = 500 = s =
s1(t) = =9t + 0.15t> — 10t + 500. 51(10) = —450 + 150 — 100 + 500 = 100, so it takes more

than 10 seconds for the raindrop to fall. Now for ¢ > 10, a(t) = 0 = v'(t) =

v(t) = constant = v;(10) = —9(10) + 0.45(10)% — 10 = —55 = v(t) = —55. At 55 ft/s, it will take
100/55 7 1.8 s to fall the last 100 ft. Hence. the total time is 10 + 100 — 130 ~ 1 g g

v'(t) = a(t) = —22. The initial velocity is 50 mi/h = 885280 — 220 £/ 5o u(t) = —22¢ + 220 The car stops
whenv(t) =0 <« t= 22 = 10 Since s(t) = —11¢> + 2204 the distance covered is



398 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

5.

16.

1.

18.

a(t) = k. the initial velocity is 30 mi/h = 30 - 3289 — 44 ft/s. and the final velocity (after 5 seconds) is

50 mi/h = 50 - 3280 — 220 /g So v(t) = kt + Cand v(0) =44 = C =44. Thus,v(t) = kt +44 =

v(5) =5k +44. Butv(5) = 222 so5k +44 =20 = 5k=% = k=5 x587ft/s’

a(t) = —-16 = wv(t) = —16t + vo where g is the car’s speed (in ft/s) when the brakes were applied. The car
stops when —16t + vo =0 & t = 15v0. Now s(t) = 3(—16)t* + vot = —8t% + vot. The car travels 200 ft in

the time that it takes to stop. so s(%vo) =200 = 200= —8(;%1}0)2 +vo(v0) = 3505 =

vg =32-200=6400 = wvo = 80 ft/s (54.54 mi/h).

Let the acceleration be a(t) = k km/h?. We have v(0) = 100 km/h and we can take the initial position s(0) to
be 0. We want the time ¢; for which v(t) = 0 to satisfy s(t) < 0.08 km. In general. v'(t) = a(t) = k. so

v(t) = kt + C. where C = v(0) = 100. Now s'(t) = v(t) = kt + 100. so s(t) = 3kt* + 100t + D. where
D = 5(0) = 0. Thus. s(t) = 3kt* 4 100t. Since v(ts) = 0. we have kt; + 100 = 0 or t; = —100/k. so

100 100 1 1 5.000
s(ty) = k ( . ) 100( P ) 10,000 <2k E) =0 The condition s(s) must satisfy is

O'(;COO <0.08 = 7%0(—)08—0 > k [kisnegative] = k < —62,500 km/h‘?~ or equivalently.

k< —328 ~ —482m/s?.

() For0<t<3wehavea(t) =60t = v(t)=30t"+C = v(0)=0=C = ot)= 30t2, so
sy =10 +C = s(0)=0=C = s(t)= 10t3. Note that v(3) = 270 and s(3) = 270.
For3<t<17: a(t)= —g=-32ft/s = o(t)=-32(t-3)+C = v(3)=2710=C =
o(t) = —32(t —3) +270 = s(t)=-16(t-3)>+270(t -3)+C = s(3)=2710=C =
s(t) = —16(t — 3)* + 270(t — 3) + 270. Note that v(17) = —178 and s(17) = 914.

For 17 < t < 22: The velocity increases linearly from —178 ft/s to —18 ft/s during this period, so
Av _ M 160 = 32. Thus, v(t) = 32(t — 17) — 178 =
At 22 — 17 5
s(t) = 16(t — 17)% — 178(t — 17) + 914 and 5(22) = 424 ft.
Fort > 22 v(t) = —18 = s(t) = —18(t —22)+ C. Buts(22) =424 =C =
s(t) = —18(t — 22) + 424.
Therefore, until the rocket lands. we have
30t if0<t<3

_32(t—3)+270 if 3<t<17

v(t) = .
32(t—17) — 178 if 17 <t <22
-18 if t> 22
and
10t3 ifo<t<3

—16(t — 3)% +270(t — 3) +270 if 3 <t <17
16(t — 17)> — 178 (¢t — 17) + 914 if 17 <t < 22
—18(t — 22) + 424 if t>22
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3001 15001
200} 12001
100 9001
2 w00
of 3 17 1
~100} 300
—2007 of 3 17 2

(b) To find the maximum height. set v(t) on 3 <t < 17equalto 0. —32(t—3)+270=0 = ¢, =11.4375s
and the maximum height is s(t1) = —16(¢, — 3)® + 270(t; — 3) + 270 = 1409.0625 ft.
(c) To find the time to land, set s(t) = —18(¢t — 22) + 424 = 0. Thent — 22 = 424 = 23,5 s0t ~ 45.6 5.

79. (a) First note that 90 mi/h = 90 x 5282 ft/s = 132 ft/s. Then a(t) = 4 ft/s*> = w(t) =4t + C.butv(0) =0

= C =0.Now4t =132whent = 12—2 = 33 s. s0 it takes 33 s to reach 132 ft/s. Therefore, taking
5(0) = 0, we have s(t) = 2t*,0 < t < 33. So s(33) = 2178 ft. 15 minutes = 15(60) = 900 s, so for
33 <t <933 wehavev(t) =132ft/s = s(933) = 132(900) + 2178 = 120,978 ft = 22.9125 mi.

(b) As in part (a), the train accelerates for 33 s and travels 2178 ft while doing so. Similarly, it decelerates for 33 s
and travels 2178 ft at the end of its trip. During the remaining 900 — 66 = 834 s it travels at 132 ft/s, so
the distance traveled is 132 - 834 = 110,088 ft. Thus. the total distance is
2178 + 110,088 4 2178 = 114.444 ft = 21.675 mi.

(c) 45 mi = 45(5280) = 237.600 ft. Subtract 2(2178) to take care of the speeding up and slowing down, and we
have 233,244 ft at 132 ft/s for a trip of 233.244/132 = 1767 s at 90 mi/h. The total time is
1767 4+ 2(33) = 1833 s = 30 min 33 s = 30.55 min.

(d) 37.5(60) = 22505. 2250 — 2(33) = 2184 s at maximum speed. 2184(132) -+ 2(2178) = 292,644 total feet
or 292,644/5280 = 55.425 mi.

4 Review

CONCEPT CHECK

1. A function f has an absolute maximum at z = c if f(c) is the largest function value on the entire domain of 1,
whereas f has a local maximum at ¢ if f(c) is the largest function value when z is near c. See Figure 4 in
Section 4.1.

2. (a) See Theorem 4.1.3.

(b) See the Closed Interval Method before Example 8 in Section 4.1.
3. (a) See Theorem 4.1.4.

(b) See Definition 4.1.6.
4. (a) See Rolle’s Theorem at the beginning of Section 4.2.

(b) See the Mean Value Theorem in Section 4.2. Geometric interpretation—there is some point P on the graph of
a function f [on the interval (a. b)] where the tangent line is parallel to the secant line that connects (a, f(a))
and (b, f(b)).
5. (a) See the I/D Test before Example | in Section 4.3.
(b) See the Concavity Test before Example 4 in Section 4.3.
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6. (a) See the First Derivative Test after Example 1 in Section 4.3.
(b) See the Second Derivative Test before Example 6 in Section 4.3.

(c) See the note before Example 7 in Section 4.3.

1. (a) See I'Hospital’s Rule and the three notes that follow it in Section 4.4.

ite faas 1 or 9
(b) Write fg as /g or T

(c) Convert the difference into a quotient using a common denominator, rationalizing, factoring, or some other
method.

(d) Convert the power to a product by taking the natural logarithm of both sides of y = f9 or by writing f¢
ased ™S
8. Without calculus you could get misleading graphs that fail to show the most interesting features of a function.
See the discussion following Figure 3 in Section 4.5 and the first paragraph in Section 4.6.

9. (a) See Figure 3 in Section 4.9.

_ f(z1)
(b) z2 = x1 — P
(©) Tny1 = Tn — %

(d) Newton’s method is likely to fail or to work very slowly when f'(z1) is close to 0.

10. (a) See the definition at the beginning of Section 4.10.

(b) If Fy and F are both antiderivatives of f on an interval I, then they differ by a constant.

TRUE-FALSE QUIZ

1. False. For example. take f(z) = z®, then f’(z) = 3z and f'(0) = 0. but f(0) = 0 is not a maximum or
minimum; (0, 0) is an inflection point.
2. False. For example. f(z) = || has an absolute minimum at 0, but f'(0) does not exist.

3. False. For example. f(x) = z is continuous on (0, 1) but attains neither a maximum nor a minimum value on

(0.1). Don’t confuse this with f being continuous on the closed interval [a, b], which would make the
statement true.

—f(-1) 0
4. True. By the Mean Value Theorem, f'(c) = ﬁi)—_(—i(l—)l) =5= 0. Notethat|c|] <1 & ce€(—1,1).

5. True. This is an example of part (b) of the I/D Test.
6. False. For example, the curve y = f(z) = 1 has no inflection points but f”(c) = 0 for all c.
7. False. f'(z)=g'(z) = f(z)= g(z)+ C. Forexample, if f(z) =  + 2 and g(z) = z + 1. then
f'(x) = g'(z) = 1. but f(z) # g().
8. False. Assume there is a function f such that f(1) = —2 and f(3) = 0. Then by the Mean Value Theorem there

— fQ1 0—(-2
exists a number ¢ € (1, 3) such that f'(c) = f(3§ — {( ) _ ; ) _ 1. But f'(z) > 1forall z. a

contradiction.
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. True. The graph of one such function is sketched. v
0 x
False. At any point (a, f(a)). we know that f'(a) < 0. So since the tangent line at (a, f(a)) is not horizontal, it

must cross the z-axis—at = b, say. But since f”(z) > 0 for all z. the graph of f must lie above all of its
tangents; in particular. f(b) > 0. But this is a contradiction, since we are given that f(z) < 0 for all z.
True. Letx; < z2 where 21, z2 € I. Then f(z1) < f(z2) and g(z1) < g(z2) (since f and g are increasing on
D.so (f +9)(z1) = f(z1) + g(z1) < f(=2) + g(z2) = (f + 9)(22).
False. f(x) = xand g(z) = 2z are both increasing on (0.1). but f(z) — g(z) = —z is not increasing on (0, 1).
False. Take f(x) = x and g(x) = z — 1. Then both f and g are increasing on (0,1). But f(z)g(z) = z(z — 1)
is not increasing on (0, 1).
True. Letz; < xz where z1,22 € I. Then 0 < f(x1) < f(z2) and 0 < g(z1) < g(z2) (since f and g are both
positive and increasing). Hence. f(z1) g(z1) < f(z2) g(z1) < f(z2) g(x2). So fg is increasing on I.
True. Letzi,z2 € I andz; < z2. Then f(z1) < f(z2) (f is increasing) =
1 1
Fen) ~ Flw)
False. The most general antiderivative is F(z) = —1/z + Cy forz < 0 and F(z) = —1/z + C, forz > 0

(f is positive) = g(z1) > g(z2) = g(x) = 1/f(z) is decreasing on I.

(see Example 1 in Section 4.10).

True. By the Mean Value Theorem. there exists a number c in (0, 1) such that

f(1) = £(0) = f'(e)(1 = 0) = f'(c). Since f'(c) is nonzero, f(1) — f(0) # 0. so f(1) # £(0).

. lin})x
False. lim — =222 _ =~ =(.not 1.
z—0 e% hrr}) ex 1
>

EXERCISES

Cfle)=10+2Tz -2 0< <4 f'(z)=27—3z% = —3(z* = 9) = —3(z + 3)(z — 3) = 0 only when

z = 3 (since =3 is not in the domain). f'(z) > 0 forz < 3and f'(z) < 0 for z > 3,50 f(3) = 64 is a local
maximum value. Checking the endpoints, we find f(0) = 10 and f(4) = 54. Thus. f(0) = 10 is the absolute
minimum value and f(3) = 64 is the absolute maximum value.

f@) =2V 0<z<4 fllz)=1-1/2yZ) =0 & 2/z=1 = x = . f'(z) does not exist

& z=0 f(z)<0for0<z<jandf'(z)>0forl<z<4s0 f(3) = —1 isalocal and absolute
minimum value. f(0) = 0 and f(4) = 2. so f(4) = 2 is the absolute maximum value.
2
z *+z+1)(1) —z(2z + 1 1—z?
.f(a:):Qﬁ,-QSxS().f'(a:):( )W) 2 ): z =0 &
2+ +1 (z2+z+1) (2 +z+1)

z = —1 (since 1 is not in the domain). f'(z) < 0for —2 < z < —land f'(z) > 0for —1 < z < 0, so
f(=1) = —1is alocal and absolute minimum value. f(—2) = —2 and f(0) = 0.so0 f(0) = 0 is an absolute
maximum value.
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f(z) = (2% +22)°. [-2,1]. f'(z) = 3(z* + 22)?(2z + 2) = 6(z + 1)x*(x + 2)2. so the only critical numbers in
the interior of the domain are z = —1,0. f'(z) < 0for —2 < z < —1 and f'(x) > 0for —1 < z < 0 and

0 < z < 1,s0 f is decreasing on (—2, —1) and increasing on (—1, 1). Thus, f(—1) = —1 is a local minimum
value. f(—2) = 0and f(1) = 27, so the local minimum value is the absolute minimum value and f(1) = 27 is the
absolute maximum value.

2

. f(z) =z +sin2z. [0,7). f'(z) =1+2cos22=0 & cos2z=-3 & 2e=For¥ & z=13
or 2&. f"(z) = —4sin2z,s0 f'(%) = —4sinZ = -2V3 < 0and f' (&) = —4sin 4T =23 > 0.0
f(3)=3%+ V3 ~ 1.91 is a local maximum value and f(2X) = 2r — 33 ~ 1.23 is a local minimum value. Also

f(0) = 0and f(r) = =, so f(0) = 0 is the absolute minimum value and f(7) = 7 is the absolute maximum

value.
ln:c -1 —(Inz)(2z) z-2zlnz 1-2Inz
flz) = (L,3] fi(=) = (22)2 = 4 —— =0 & hz=3 &
T = 61/2 = /e~ 1.65. f'(z) > 0forxz < /eand f'(z) < 0 forz > \/e, so f is increasing on (1, /e ) and

1
decreasing on (1/e, 3) . Hence, f(v/e) = % is a local maximum value. f(1) = O and f(3) = %3 ~ 0.12. Since

2i ~0.18, f(v/e) = 2l is the absolute maximum value and f(1) = 0 is the absolute minimum value.
e e

im tanmz H im wsec? Tz _ m-1? —
CanbIn(l+z) em01/(1+z) 11
. lim 1 - cosz 2 lim ST _ 9 =0

10.

1.

12.

13.

14.

z—0 T2+ z—02x4+1 1

. lim li li = lim8e** =8-1=38
z—0 2 z—0 2z z—0 z—0
4z 4x
lim —l-dzn lim de 42 lim 16 = lim 8¢ = o
3 2 6 6
lim z%° = lim — 2 lim 3ii lim — 2 lim — =0
T— 00 z—o00 €% z—oo €% z—o0 e’ r—o0 %
Inz u im 1z . 1.9
= i = = 1 —5T =0
apl_l,rlo1+aIC nz = st 1/ oot —2/x3 oot (~32%)
! z 1\ lim zlnz —xz+1\ u lim z-(1/z)+lnx—1
et \z -1 Inz) aoit (@—DIlnz ) z-1+ (z—1) - (1/z)+Inz
Inz H 1/z 1 1
= lim ————— = lim 5 = =
eo1t 1 —1/z+Inz 201+ 1/ +1/:z: 1+1 2
y = (tanz)°*® = Iny = coszlntanz,so

. . Intanz H . (1/ tanz)sec® x secx
lim lny= lim = lim ~~————— = lim
z—(m/2)~ z—(n/2)~ SE€CcT z—(7/2)~ secr tanx c—(n/2)- tan?x
cos T 0

= lim — = — =0,5%0
w—(n/2)- sin?zx 12

lim (tanz)*® = lim €e"Y=¢" =1
z—(m/2) z—(m/2)~
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FO)=0.f(~2) = f'(1) = £(9) = 0. lim f(x) = 0. ' e

,I:LH}; f(z) = —o0. f'(z) < 0on (—o0, —2). (1,6). and (9, o). 20 /‘\
f'(z) >00n(=2,1) and (6,9). f(x) > 0 on (o0, 0) \./‘ ! s
and (12, 00), f(z) < 0on (0,6) and (6, 12) |

For0 <z < 1. f'(z) = 2z.s0 f(z) = 2% + C. Since f(0) = 0.

f(z)=2"on[0,1]. For1 <z < 3. f'(z) = —1.s0 Y

fl@)= -2 +D. 1=f(1)=-1+D = D=2s0 | /\l/\ -/
f(z)=2—z.Forz >3, f'(z) =L.so f(z) =z + E. \/ -10]
-1=f3)=3+E = E=—4,50 f(z) =z — 4. Since f

is even, its graph is symmetric about the y-axis.

fisodd. f'(z) <Ofor0 <z <2 f'(z)>0forz > 2. Y
=2
f'(2) >0for0<z <3 f'(z)<0forz>3. N
limg oo f(z) = -2
X
_________ y>2

(a) Using the Test for Monotonic Functions we know that £ is increasing on (—2, 0) and (4, co) because f' > 0 on
(=2,0) and (4, 00). and that f is decreasing on (—oo. —2) and (0.4) because f* < 0 on (—00, —2) and (0, 4).
(b) Using the First Derivative Test. we know that f has a local maximum at z = 0 because f changes from positive

to negative at x = 0, and that f has a local minimum at z = 4 because f' changes from negative to positive

atx = 4.

(@) ,

y ‘
\ f possible graph of f
. /\\//,\ ‘ | , s

y=f(x)=2-2z-2%> A. D=R B. y-intercept: f(0) = 2. H. Y
The z-intercept (approximately 0.770917) can be found using Newton's
Method. C. Nosymmetry D. No asymptote

/w

E. fl(z) = -2-32" = —(322 +2) < 0.50 f is decreasing on R. *
F. No extreme value  G. f”(z) = —6z < 0 on (0, 00) and f'(x) >0
on (—00,0), 5o f is CD on (0. c0) and CU on (—00,0).

There is an IP at (0, 2).
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20.

21.

23.

.y = f(z)

y=flx)=2°—-62>—156c +4 A. D=R H. y
B. y-intercept: f(0) = 4; z-intercepts: f(z) =0 = .
T~ —2.09,.0.24,7.85 C. Nosymmetry D. No asymptote cLa

E. f'(z) = 32® — 12z — 15 = 3(z° — 4z — 5) = 3(z + 1)(z — 5).
so f is increasing on (—oo, —1), decreasing on (—1, 5). and increasing 2.~
on (5,00). F. Local maximum value f(—1) = 12, local minimum

value f(5) = —96. G. f"(z) =6z —12=6(z —2),s0 fisCD (5.-96)

on (—00,2) and CU on (2, o). There is an IP at (2, —42).

y=f(z)=2* -3¢ +322 —z=z(x— 1) A. D=R B. y-intercept: f(0) = 0: z-intercepts: f(z) =0
& zx=0orz=1 C.Nosymmetry D. fisa polynomial function and hence, it has no asymptote.
E. f'(z) = 42% — 92 + 6z — 1. Since the sum of the coefficients is 0. 1 is a root of f’. so

fl(@)=(z-1)(42® =5z +1) = (z - 1)*(4z - 1). f'(z) <0 = =< 1,50 f is decreasing on (—o0, ;)

1
and f is increasing on (%, oo). F. f'(z) does not change signatz = 1, H. y

. . .. 2T
50 there is not a local extremum there. f(3) = — 2% is a local minimum

value. G. f’(z) =12x> — 18z + 6 = 6(2z — 1)(z — 1). 11

f(2)=0 & z=1Lorl. f'(z)<0 & ;<z<l =

fisCDon (3,1) and CU on (—o0, 3) and (1, 00). There are inflection

points at (3, —15) and (1,0).

I 1
T1-z2 (1+7)(1-2)
C. f(—z) = f(x).so f is even and the graph of f is symmetric about the y-axis. D. Vertical asymptotes:

A. D ={z |z # +1} B. y-intercept: f(0) = 1: no z-intercept

2 . .
x = +1. Horizontal asymptote: y =0 E. ¢/ = (Tx—z)E =0 & z=0.s0 fisdecreasing on (—oo, —1)
-
and (—1,0), and increasing on (0, 1) and (1, 00). H. g
F. Local minimum value f(0) = 1; no local maximum x=— 1 x =1

(1-2%)° 22z 2(1 - a*)(-2x) |
(1—z2)* o

2(1 — 2 872 2 ) :

_ 201 w)+393 _ bz +‘23<0 o 221

(1-=?) (1—a2)

5o f is CD on (—o0, —1) and (1,00), and CU on (—1,1). No IP

G. f'(z) =

=

y = f(z) = wl_g)—Q A. D= {z|z#0,3} = (—00,0)U(0,3)U(3,00) B. No intercepts.

1 . . 1
1 _ = = S A. 1§ — =00
C. Nosymmetry. D. lim oz —3)2 0.soy=0isaH oot Z( — 3)2

1 1
im ——— — oo, lim ———= = oo, sox = 0and z = 3 are VA.
v e PRl e ) CE U

, (x—3)*+2z(z—3) _ 3(1—=z)
E. fi(z)=- z2(x — 3)4 T ox2(x - 3)°

=



24.

25.

26.
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f'(x) >0 & 1<z <3 s0fisincreasing on (1,3) and decreasing H. Y
on (—00,0). (0,1), and (3,00) . F. Local minimum value f(1) = %

_ 6(20° — 4z +3)

" — 2 _ f Il
G. f"(z) @3y . Note that 22° — 4z + 3 > O forall z = : -
since it has negative discriminant. So f”(z) >0 & z>0 = fis
CU on (0, 3) and (3, co) and CD on (—00, 0). No IP §x=3

1 2z +1

y=I@)=1+

=——— A.D= 0,—1} B. No y-intercept. z-intercept = — 1
z z+1 z(z+1) ]z } Y P P 2
. . 2z +1 . 2z +1
1 = S = . e — . . l —_— = - .
C. No symmetry D. Iklilmf(m) 0.soy =0isaHA zhrg+ 2@t ) 00 Jim 2@t D) 00
im el =o00, lim 2zt l = —00,50z =0,z = —1 are VA.
z——1+ x(m + 1) z——1" m(w + 1)
1 1 . . .
E. f'(z) = = m < 0.0 f is decreasing on (—oo, —1), H. ¥
(=1,0) and (0,00). F. No extreme values x= _12
vy 2 2 2Qz+1)(a®+z+1) :
G' f (1;)_$3+($+1)3_ 1'3(1'+1)3 . i 0 X
f'(z)>0 & z>00r—1<z< -1 50 fisCUon (0,00)and
(—1.~3) and CD on (o0, —1) and (~1.0). IPat (~1,0)

z? 64
y=f(z) = 778 -%" 8+ 718 A. D={z|z# -8} B. Interceptsare0 C. No symmetry
D. lim 2’ oo, but f(z) — (z — 8) 64 0as ) 8 is a slant asymptote
. = — - = — — R = — S :
o - . P T — 00,50y =2 $ asymp
2 z°
im =ooand lim = —o00.s0x = —8isaVA. H. a4y
z—-8+ T+ 8 z——8- T+ 8 i
64 z(z + 16) x=-8)
E. fl(z)=1- = —16, A\

f'(x) EFTE EEE >0 & z>0o0rz< —16 :o/\ .
so f is increasing on (—o0, —16) and (0, 00) and decreasing on (=16, “32)1,%’/ y=x-8
(—16,—8) and (—8,0). F. Local maximum value f(-=16) = -32, \
local minimum value f(0) =0  G. f"(z) = 128/(z +8)® >0 <« /\

T > —8.50 fis CU on (-8, c0) and CD on (—o0, —8). No IP

y=fz)=z+/1—z A. D={z|z<1}=(-00,1] B. y-intercept = 1; z-intercepts occur when
2HVI—2=0 = Vi—e=-z = l-2=2" = 2’42-1=0 = g==158

the larger root is extraneous. so the only z-intercept is —‘%é . C. Nosymmetry D. No asymptote

E flz)=1-1/2V1-2)=0 & 2/1-z2=1 & H. y

l-z=1 & r=2and f'(z) >0 <« x < 350 f is increasing
1

on (—o0, 3), decreasing on (2,1). F. Local maximum value f@3)=:2 5 —
7 1 .
G f (z):—m<0 < x<l.sofisCDon (—oo0,1).

No I[P
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21.

28.

29.

y = =zv2+zx A. D=[-2,00) B. y—intercept: f(0) = 0; z-intercepts: —2and 0 C. No
1 3z +4
symmetry D. Noasymptote E. f'(z) = +vV2+zx= z+224+2))=—m——=
2\/2~|— \/2+m[ ( ) 2vV2+z
when z = —%.s0 f is decreasing on (—2, —%) and increasing on (—3,00). F. Local minimum value
f(-3)= \/_ i ~ —1.09, no local maximum H. y
2vV2+2-3—-Bx+4)———
7 _ ( ) 2+«
G. 1"(z) = v
42+ x)
:6(2+z)—(3m+4)_ 3z +8 x
4(2 + z)3/? 42+ 1x)3/? )

f"(z) > 0forz > —2,s0 f is CU on (=2, 00). No IP
y=f(z)=+vz— ¥z A. D=1[0,00) B. y-intercept0; z-intercepts 0, 1
C. No symmetry D. lim (331/2 — z1/3> = lim [w1/3 (ml/ﬁ - 1)] = 00, No asymptote

r—00 r— 00

32/ —2
LI L

E. f'(z) = %z_l/Q -1 >0 & 32/5>2 & > (%)G.SOf is increasing on

622/3
((%)6 =°°> and decreasing on (0, (%)6) . ( 2) ) — 2 is a local minimum value.
- 8 —9z'/°
G. f'(z)=—3= 3/2+%$_5/3_%x_:/3_>0 & /<8 H. 7

/

0 1 x

S < (%)G,SOfis CUon (0, (%) ) and CD on ((%)6,00).

y = f(z) =sin®z —2cosz A. D =R B. y-intercept: f(0)=-2 C. f(—z) = f(x).s0
f is symmetric with respect to the y-axis. f has period 2. D. No asymptote
E. y = 2sinzcosz + 2sinz = 2sinz (cosz +1).y’ =0 & sinz=0orcosz=—-1 <« z=nmor
z = (2n+ 1)7. y > 0 whensinz > 0, since cosz +1 > 0 for all z. Therefore, 3’ > 0 (and so f is increasing)
on (2n, (2n + 1)7): ¥’ < 0 (and so f is decreasing) on ((2n — 1)m,2nm). F. Local maximum values are
f((2n + 1)m) = 2; local minimum values are f(2nm) = —2. G. y' =sin2z +2sinz =

" =2cos2z + 2cosz = 2(2cos’ x — 1) + 2cosz = 4cos’z +2cosT — 2

=2(2cos’ & + cosz — 1) = 2(2cosz — 1)(cosz + 1)

y'=0 & cosz=30r—1 & z=2nmEjorr= (2n + 1)m. y" > 0 (and so f is CU) on
(2nm — §,2nm + 2):9"” <0 (andso f is CD)on (2nm + 5,207 + 7). There are inflection points

at (2nm & z.-3)




3.

32.

33.
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y=f(z) =4z —tanz, -5 <z <f A . D=(-%.Z). B. y-intercept=f(0) =0 C. f(—z)=—f(z).
so the curve is symmetric about (0,0). D. 111512_ (4 —tanz) = —oo, l_im/2+(4x —tanz) =00, soz = 3

andz=—-ZareVA. E. f'(z)=4-sec’z>0 & secr<2 &

cosx>% & —% <z < 3.s0 fisincreasing on (—%%) and H. Y
decreasingon (-5, %) and (3.3). F f(%)=4% —\Bisa ==
local maximum value, f(—%) = v/3 — 4% is a local minimum value. 0 = x
G. f"(z) = —2sec’ztanz >0 < tanz <0 -5 <z <0, \/I ’

so fis CUon (—%.0) and CD on (0, Z). IP at (0, 0) |

2

N[y
|
NE

y=f(z)=sin"'(1/z) A. D={z|-1<1/z<1}= (=00, —1]U[1,00). B. No intercept
C. f(-z) = —f(z). symmetric about the origin D. liril sin™'(1/z) = sin™! (0) = 0.s0y = 0is a HA.
T — T 00

1 1 -1 . .
E. f(z) = —=——=—== | —-— | = —==== < 0.0 f is decreasing on (— o0, —1) and (1, c0).
fz) 1_(1/@2( )= e <0 zon
F. No local extreme value, but f(1) = Z is the absolute maximum value H. '

and f(-1) = —g is the absolute minimum value. 2 k
4z — 2 z(22% -1 ‘ 1 o| | x
G. f"(z) = i 2 = ( ) > O0forxz > 1and \ ..

2(zt — m2)3/2 (24 — x2)3/2
f"(z) < 0forz < —1.s0 fis CUon (1, 00) and CD on (=00, —1).
No IP

y=f(z) = e A.D=R B. y-intercept 1; no z-intercept C. No symmetry D. lim e’ —q,

z—Foo
soy=0isaHA. E.y=f(z)=e22" = f(z)=2(1- ac)e%_“”2 >0 & z <1 so fisincreasing
on (—00,1) and decreasing on (1,00). F. f(1) = e s a local and absolute maximum value.
G f'(2)=2(22" 4z +1)e* =" =0 & z=1+% H.
'z >0 < w<1—3§orz> 1+§.sofisCUon
(—oo,l— 3@) and (1+ %.oo).andCDon (1 — 3?1-{-@)

Pat (1:+ 2, e)

y=f(z)=e"+e* A. D=R B. y-intercept 2: no z-intercept C. No symmetry

D. lim (e” + e™3%) = oo, no asymptote  E. y=f(z)=e"+e3 =

z—+too
(@) =e® —3e73% = g3 (¥ =3)>0 & e*>3 o H. y
4z>In3 & > $In3~0.27. 50 f is increasing on (31n3.00)

and decreasing on (—oo, i In3). 2
F. Absolute minimum value f(i In 3) =344 373/4 & 1.75.
G. f"(z) = €® 4+ 9¢7% > 0.50 f is CU on (—00. 00). No IP




408 O CHAPTER4 APPLICATIONS OF DIFFERENTIATION

3. y=f(z)=In(z2—1) A. D= (—00,~1)U(l,00) B. No y-intercept; z-intercepts £v/2 C. Symmetric

about the y-axis D. lim In(z? — 1) = oo, lim In(z? — 1) = —oo. lim In(z? — 1) = —co.s0z = 1
_z—too z—1+ rz——1"
2
andz = —lareVA. E. y=f(z)=In(z*-1) = f(z)= p f 7> Oforz > 1and f'(z) <0
for z < —1,s0 f is increasing on (1, o) and decreasing on (—oo, —1). H. | S |
x=-1i x=
Note that the domain of f is |z] > 1. F. No extreme value \ i /
NN
G. f(z) = —2-—(172 7 < 0.s0 fis CD on (—oo, —1) and (1, 00). SV IR A S
No IP
2 3 2 2 2
¢ -1 z°(2z) — (z° — 1)3x 3—=zx
35. f(,’])) = x3 = f’(m) = iﬁ ) = x4 = p 1
v zt(—2z) — (3 — 2%)42® _22°—12
f (z) - 8 - 5 f
Estimates: From the graphs of f’ and f”. it appears that f is increasing on
-5 5
(—1.73,0) and (0, 1.73) and decreasing on (—oo, —1.73) and (1.73, 00); N D
-0.2
f has a local maximum of about f(1.73) = 0.38 and a local minimum of 0.2
([ )
about f(—1.7) = —0.38; f is CU on (—2.45, 0) and (2.45, 00), and CD } %
on (—o0, —2.45) and (0,2.45); and f has inflection points at about -8 §
(—2.45, —0.34) and (2.45,0.34). L J
_ 2 -0.2
Exact: Now f'(z) = is positive for 0 < z* < 3. that s, f is 15
a8 )
increasing on (—+/3,0) and (0, V/3):and f' (z) is negative (and so f is / f
-5 \/ f\ 5
decreasing) on (—00, —v/3) and (v/3,00). f () = 0 when z = +/3. {
f' goes from positive to negative at = V/3, so f has a local maximum of . — J
2 -0.25
f(\/g) = \f/§)3 - 3‘9/—5; and since f is odd, we know that maxima on , W
the interval (0, c0) correspond to minima on (—00,0). so f has a local f
2
ini _/3) = 2 gy = 2120 ositive
minimum of f( \/5) %2, Also, f (z) o is positive (so L ~ s
-0.4

fis CU) on (—+/6,0) and (\/6, o), and negative (so f is CD) on
(—o0, ~+/6) and (0, v/6). There are IP at (\/_ i ) and
(-8
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®. f(a) = L =) >

1-
—2/3 9
f@) == 0D+ (1) () = T
vy 21’2 - (1+22)2)@—1) | 1+2 (—227%°\ 22752’ 4501
flle)=—5 (z—1)* +(35—1)2< 9 ) 9 (-1
4 20 0.5

J | W
_3 ) _SL fT ~C )’

-0.2 =10 —0.1

(S}
(=4

-2 -0.6 0

From the graphs, it appears that f is increasing on (—0.50. 1) and (1, co0). with a vertical asymptote at = 1. and
decreasing on (—o0, —0.50); f has no local maximum. but a local minimum of about f(—0.50) = —0.53; f is CU
on (—1.17,0) and (0.17,1) and CD on (—oc0, —1.17). (0,0.17) and (1, 00); and £ has inflection points at about
(—1.17,-0.49). (0,0) and (0.17,0.67). Note also that 211'1}:100 f(z) = 0,s0y = 0is a horizontal asymptote.

37. f(x) =32° — b2 +2* — 52 — 2 +2 = f(z) = 182° — 262t + 42’ — 152° — 4z =

f(z) = 90z* — 10023 + 1222 — 30z — 4
75 1 75

=05

T

appears that f is increasing on f

—_—

Jos

-50 ~4 -50
From the graphs of f’ and " it 100 25
(—0.23,0) and (1.62, c0) and f
decreasing on (—o00, —0.23) and
(0,1.62); f has a local maximum of o1 - \77 23 —0s 0s
-25 0.8 ’

about f (0) = 2 and local minima
of about f(—0.23) = 1.96 and f(1.62) = —19.2; f is CU on (—o0, —0.12) and (1.24, 00) and CD on
(—0.12,1.24): and f has inflection points at about (—0.12. 1.98) and (1.24, —12.1).
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38. f(z) =sinzcos’z = f'(z) =cos’z —2sin’z cosz = f'(z)=—Tsinz cos®z + 2sindz

fnnl AR |
YAYAY

-1 —-04

3
3

From the graphs of f and f”, it appears that f is increasing on (0, 0.62), (1.57,2.53), (3.76,4.71) and
(5.67, 2m) and decreasing on (0.62,1.57), (2.53, 3.76) and (4.71,5.67); f has local maxima of about
£(0.62) = £(2.53) = 0.38 and f(4.71) = 0 and local minima of about f(1.57) = 0 and

F(3.76) = f(5.67) = —0.38: f is CU on (1.08, 2.06). (3.14,4.22) and (5.20, 2) and CD on (0. 1.08),
(2.06,3.14) and (4.22,5.20); and f has inflection points at about (0, 0). (1.08,0.20). (2.06,0.20), (3.14, 0),
(4.22, —0.20). (5.20, —0.20) and (2. 0).

39. 1 From the graph, we estimate the points of inflection to be about
grap

(£082,022). f(z) =e =" = fla)=22V =

f'(z) =2 [m_s (2.’1173)6_1/362 +e (—3:[‘4)]

=206 /%" (2 - 32%).

0 ThisisOwhen2 — 3z =0 < == :l:\/g. so the inflection points
are (i\/'%“e—s/z)‘
@ b) /(@) lim f() = = 3
= —. )= —— ==
(a) 1.1 ()f.’l? 1+€1/m a:1—>oo 1+1 2
e .
. 1 1
1 Jm f@) =177y
f 1
=0,
11m flz) = ps
1
-10 10 i _ -1
~0.1 — om0 f@) =1 +0
(c) From the graph of f. estimates for the IP are (—0.4.0.9) and (0.4,0.08).
3
et [61/1(21 —1)+2z+ 1]
d) f'(z) = —
@ 7@ zt(et/ +1)° f 0.417
(e) From the graph. we see that f” changes sign at x = £0.417 -3 ool I 3
(z = 0is not in the domain of f). IP are approximately
(0.417.0.083) and (—0.417,0.917).
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#1. f(z) = arctan(cos(3 arcsinz)). We use a CAS to compute f" and f”. and to graph f. f’. and f":

U VARNRYN

-1 —4 —11

From the graph of f', it appears that the only maximum occurs at z = 0 and there are minima at z = +0.87.

From the graph of £, it appears that there are inflection points at x = £0.52.

42. f(z) = In(2z 4+ xzsinz). We use the CAS to calculate

2+sinz + zcosx
’ .z e e
Fle) = 2r + rsinz
F(a) = 2z2sinz + 4sinz — cos’z + 2% +5
&= x%(cos?z — 4sinz — 5) ’

and

From the graphs, it seems that f' > 0 (and so f is increasing) on approximately the intervals (0, 2.7), (4.5,8.2) and
(10.9,14.3). It seems that f” changes sign (indicating inflection points) at z = 3.8, 5.7, 10.0 and 12.0. Looking
back at the graph of f. this implies that the inflection points have approximate coordinates (3.8, 1.7). (5.7, 2.1),
(10.0,2.7), and (12.0,2.9).

43. The family of functions f(z) = In(sinz + C) all have the same 2 Cc=3 (=2

period and all have maximum values at £ = 3 + 27n. Since the

|
wly

domain of In is (0, co), f has a graph only if sinz + C > 0
somewhere. Since —1 < sinz < 1, this happens if C > —1. that
is, f has no graph if C < —1. Similarly. if C > 1, then

sinz + C > 0 and f is continuous on (—oo, c0). As C increases. \

-5 77
-05 0 1

the graph of f is shifted vertically upward and flattens out.

If-1<C <1 fisdefined wheresinz +C >0 ¢« sinz>-C & sin (-C) <z <7 —sin"}(-C).

Since the period is 2. the domain of f is (2n7 + sin™'(=C), (2n + 1)7 — sin‘l(—C)), n an integer.
44. We exclude the case ¢ = 0. since in that case f(z) = 0 for all z. To find the maxima and minima. we differentiate:
flz) = cre™® = fl(z)= c[:z:e““arz (—2cz) + e_('m2(1)] = ce—c@” (—2cz® + 1). This is 0 where

22’ +1=0 & z= £1/+/2c. Soif ¢ > 0. there are two maxima or minima. whose z-coordinates approach

0 as c increases. The negative root gives a minimum and the positive root gives a maximum, by the First Derivative
2
Test. By substituting back into the equation. we see that f(+1/v/2c) = c¢(+1/v/2¢) emc(F1/vEe)” _ 4 c/2e.

So as c increases, the extreme points become more pronounced. Note that if ¢ > 0, then lirf f(z)=0.Ifc <0,
T— oo

then there are no extreme values, and lil:'g f(z) = Foo.
Tr— oo
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45,

47.

49,

To find the points of inflection. we differentiate again: f'(z) = ce“*" (—2cz’+1) =
f'(z) = c[e"'”z(—4cz) + (—2cz® +1) (~20me*"”2)] = —2c%ze"" (3 —2cz®). Thisis 0 at z = 0 and

where3 —2c22 =0 & z=+/3/(2) = IPat (:i:\/B/(2c), + 3c/2e~3/2). If ¢ > O there are three

inflection points, and as ¢ increases. the z-coordinates of the nonzero inflection points approach 0. If ¢ < 0, there is
only one inflection point, the origin.

-1 3

c=
+
\
\
\
{ \\
-2

\
c=

fz) = 2 + 2% 4 2 — 1 = 0. Since f is continuous and f(0) = —1 and f(1) = 2, the equation has at least one
root in (0, 1). by the Intermediate Value Theorem. Suppose the equation has two roots. a and b. with a < b.
Then f(a) = 0 = f(b). so by the Mean Value Theorem, there is a number « in (a, b) such that

oy SO = @) _ 0
f(=) = b—a  b-—a
f'(x) = 1012 + 512°° + 1 > 1 forall z.

= 0.s0 f' has aroot in (a,b). But this is impossible since

. By the Mean Value Theorem, f'(c) = M & 4f'(c) = f(4) — 1 for some ¢ with 0 < ¢ < 4. Since

-0
2< f'(c) <5.wehave 4(2) < 4f'(c) <4(5) < 4(2)<f(4)-1<4(5) & 8<f(4)-1<20 «
9< f(4) <21

Since f is continuous on [32, 33] and differentiable on (32, 33). then by the Mean Value Theorem there exists a

5 _ 3 B s
number c in (32, 33) such that f'(c) = ™/ = %ﬁ,\é: = ¥3B-2.butic >0 = VY33-2>0

= /33> 2. Also f' is decreasing. so that f'(c) < f'(32) = (32)™*/* = 0.0125 =
0.0125 > f'(c) = ¥/33—2 = V33 < 2.0125. Therefore. 2 < ¥/33 < 2.0125.

. For (1,6) to be on the curve y = z° + az® + bw + 1, we havethat 6 = 1 +a+b+1 = b=4—a. Now

y' = 3z? 4+ 2az + band ¥’ = 6z + 2a. Also, for (1,6) to be an inflection point it must be true that
y'(1)=6(1)+2a=0 = a=-3 = b=4—(-3)="7 Notethat witha = —3, we have

y"” =6z — 6 = 6(x — 1), soy” changes sign at z = 1, proving that (1, 6) is a point of inflection. [This does not
follow from the fact that y" (1) = 0.]

(@) g(z) = f(2?) = g'(z) =2z f (2?) by the Chain Rule. Since f'(z) > 0 for all z 7 0, we must have
f'(=?) >

Oforz #0.50¢'(x) =0 < =z =0.Now g'(z) changes sign (from negative to positive) at



50.

51.

52.

53.

CHAPTER4 REVIEW 0O #13

z = 0. since one of its factors, f'(z?). is positive for all z. and its other factor, 2z. changes from negative to

positive at this point, so by the First Derivative Test. f has a local and absolute minimum at z = 0.
M) ¢'(z) =2zf'(2?) = g"(z)=2[zf"(z?) (2z) + f'(z°)] = 4a®f" (2®) + 2" (z*) by the Product Rule
and the Chain Rule. But z° > 0 for all z # 0. ' (z*) > 0 (since f is CU for > 0). and f'(z*) > 0 for all
z # 0. so since all of its factors are positive. g” (z) > 0 for z # 0. Whether g (0) is positive or 0 doesn’t
matter (since the sign of g”" does not change there): g is concave upward on R.
Call the two integers z and y. Then = + 4y = 1000, so = 1000 — 4y. Their product is P = zy = (1000 — 4y)y.
so our problem is to maximize the function P(y) = 1000y — 4y?. where 0 < y < 250 and v is an integer.
P'(y) = 1000 — 8y.so P’ (y) =0 & y=125. P'(y) = —8 < 0.so P(125) = 62.500 is an absolute
maximum. Since the optimal y turned out to be an integer. we have found the desired pair of numbers, namely

z = 1000 — 4(125) = 500 and y = 125.

If B = 0, the line is vertical and the distance from z = —% to (z1,y1) is [z1 + %’ = @\/%%B—tq S

assume B # 0. The square of the distance from (z1.y1) to the line is f(z) = (z — 1) + (y — y1)° where
- 2 A ¢ ?

Az + By + C = 0. so we minimize f(z) = (z —z1)" + —gr-p W =

C A

A2+ B2

and this gives

. , A?
a minimum since f"(z) = 2(1 + §> > (). Substituting this value of z into f(z) and simplifying gives
_ (Az1 + By, +C)? . . . |Az1 + By, + C|
flz) = T B . so the minimum distance is y/ f(z) = —Z\/—T_BT

On the hyperbola zy = 8. it d(z) is the distance from the point (z,y) = (z,8/z) to the point (3,0). then

[d(@)) = (z — 3)° +64/2% = f(z). () =2z —3)—128/2® =0 = 2* -3z —64=0 =
(z—4)(2® +2° + 42+ 16) =0 = =z = 4since the solution must have z > 0. Then y = & = 2, 50 the point
is (4,2).

By similar triangles. ¥_ ;. so the area of the triangle is
T z? —2rx
2
A(m =1 =2 =T =
)= 3(2y)z ==y T
A(z) = 2rz /22 — 2rz — rz*(z — 1) /12 — 2rz
z? —2rx
2
-3
= % =0 whenx = 3r.
— 2rx

A'(z) <Owhen2r <z < 3r. A'(z) > 0whenz > 3r. Soz = 3r
gives a minimum and A(3r) = r(grz)/(\/gr) = 3372
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54. The volume of the cone is

V =1im? (1"—}-9:)—571'(1“ -2 (r+z). -r<z<r

V(@) =% [(r? = 2%) (1) + (r + z)(—22)]
:%[r+a:)(r—w—2x)]:g(r—f-m)(r—Sz)

=0whenz = —rorz =r/3.

Now V(r) = 0 = V(—r), so the maximum occurs at x = r/3

3
and the volume is V(g) = §<r2 — 3> (43T> = %

55. We minimize
c L(z) = |PA| +|PB| + |PC| =2vVz2 + 16 + (5 — x).
T 0<z<5 L(z)=2z/Vz>+16 -1=0 <
5’ 2=V +16 & 4’=2+16 & z=%
vz Dx . o1 L(O):13.L(i)z11.9. L(5) ~ 12.8. s0 the minimum

occurs when & = ‘/i_ ~ 2.3

56. C If |CD| = 2, the last part of L(x) changes from (5 — z) to
(2—-z)with0 <z <2 ButwestillgetL'(z) =0 <«
. z= —j——. which isn’t in the interval [0, 2]. Now L(0) = 10
A 4 D 4 B and L(2) =2 V20 = 41/5 ~ 8.9. The minimum occurs
when P =C.
L dv K 1 C 1 C
no=Kgrg d_Lzz\/<L/0)+<c/L>(5‘ﬁ>: ot ¢ e e

L = C. This gives the minimum velocity since v’ < 0 for0 < L < C'andv' > 0for L > C.

58. We minimize the surface area S = 77 + 27rh + %(47”"2) = 3mr?® + 27rh.
V — 2qp8 \%
: 3 — 3 _ 2
Solving V' = mr?h + %ﬂr for h, we get h = T T 5T, 80
\% 2V
S(r) = 3nr? +2ﬂ'r[m - %7‘] = %Trr + -
2V 073 _ 9y N
S’(T):A—T‘?—f—l—gﬂ’r:—g“T—:O =4 l:;—)71"1" =
3_ 3V 3
= =5s & = - This gives an absolute minimum since S'(r) < 0 for 0 < r < —5—
2 3V
fis
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59. Let z denote the number of $1 decreases in ticket price. Then the ticket price is $12 — $1(z). and the average

attendance is 11.000 + 1000(z). Now the revenue per game is
R(z) = (price per person) x (number of people per game)
= (12 — z)(11.000 + 1000z) = —~1000z* 4 1000z + 132,000

for 0 < z < 4 (since the seating capacity is 15.000) = R'(z) = —2000z +1000=0 < 2 =0..
This is a maximum since R”(z) = —2000 < 0 for all z. Now we must check the value of

R(z) = (12 — £)(11,000 + 1000z) at z = 0.5 and at the endpoints of the domain to see which value of =
gives the maximum value of R. R(0) = (12)(11.000) = 132.000. R(0.5) = (11.5)(11.500) = 132,250, and
R(4) = (8)(15.000) = 120.000. Thus. the maximum revenue of $132.250 per game occurs when the average

attendance is 11,500 and the ticket price is $11.50.

60. (a) C(z) = 1800 + 25z — 0.22* + 0.001z> and 12.000
R(z) = zp(z) = 48.2z — 0.03z>. The profit is maximized R
when C'(z) = R'(x). C
From the figure, we estimate that the tangents are parallel 300
0
when z ~ 160.
(b) C'(z) = 25 — 0.4z + 0.003z> and R'(z) = 48.2 — 0.06z. C'(z) = R'(z) =
0.003z> — 0.342 — 232 =0 = z; ~161.3(z > 0). R"(z) = —0.06 and
C"(z) = —0.4+ 0.006z. so R"(z1) = —0.06 < C"'(x1) ~ 0.57 = profit is maximized by
producing 161 units.
- C 1800
(©) c(z) = :(f) = + 25 — 0.2z + 0.001z is the average cost. %
Since the average cost is minimized when the marginal cost equals <
the average cost, we graph c(z) and C’(x) and estimate the point of
intersection. From the figure, C'(z) = c(z) & z =~ 144. 0 , 300

61. f(z) =2° —2* +32° - 32 -2 = f'(z) =5z — 42 + 62 — 3. 50
xi—wﬁ+3xi—3xn72
5z4 — 43 + 6z, — 3

Tntl = Tn — Nowz; =1 = z2=15 = z3~1.343860 =

4 = 1.300320 = 25 ~1.297396 = w6 ~ 1.297383 ~ z7. so the root in [1, 2] is 1.297383, to six

decimal places.
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62. Graphing y = sinz and y = z® — 3z + 1 shows that there are two

64.

roots. one about 0.3 and the other about 2.8.
f(x) =sint -2 4+3z-1 = fl(x) =cosz—2x+3 =

: 2
sinzn, — x;, + 3z, — 1
Tn41 = Tn — . 1 = 0.
+1 = Tn e —— Now z; = 0.3 =

T2 ~ (0.268552 = 1x3~0.26888l ~z4andzx; =2.8 =
T2~ 2.770354 = x3 = 2.770058 = x4. so to six decimal places.

the roots are 0.268881 and 2.770058.

L f(t) =cost+t—t> = f'(t)=—sint+1—2t f'(t)exists 3
for all ¢, so to find the maximum of f, we can examine the zeros of f'. f'\
From the graph of f’. we see that a good choice for ¢; is t; = 0.3. -3 3
Use g(t) = —sint + 1 — 2t and ¢’ (t) = — cost — 2 to obtain
-3

to & 0.33535293. t3 ~ 0.33541803 =~ t4. Since
f"(t) = —cost — 2 < O forall ¢, £(0.33541803) = 1.16718557 is

the absolute maximum.

y=f(z) =zsinz. 0 <z <2m. A. D=][0,2r] B. y-intercept: f(0) = 0; z-intercepts: f(z) =0 &
z=0orsint=0 & =0, mor2r. C. Thereisnosymmetryon D, butif f is defined for all real numbers
x. then f is an even function. D. No asymptote E. f'(z) = zcosz + sinz. To find critical numbers in (0, 27).
we graph f and see that there are two critical numbers. about 2 and 4.9. To find them more precisely. we use
Newton's method, setting g(z) = f'(z) = z cosx + sinz, so that ¢’ (z) = f"'(z) = 2cosz — zsinz and

Tp COS Iy + SINTy,

- L1 =2 = x2~2.029048, x3 ~ 2.028758 ~ r4and x; = 4.9 =
2cos Ty — Ty SINTy

T4l = Tn —
o ~ 4.913214. x3 ~ 4.913180 =~ z4. so the critical numbers, to six decimal places. are r; = 2.028758 and

r2 = 4.913180. By checking sample values of f/in (0,71). (r1,72). and (rz, 27), we see that f is increasing on
(0,71). decreasing on (71, 2). and increasing on (r2, 2w). F. Local maximum value f(r1) ~ 1.819706, local
minimum value f(r2) ~ —4.814470. G. f”(z) = 2cosz — xsinz. To find points where f”(x) = 0. we graph

f'" and find that f”(x) = 0 at about 1 and 3.6. To find the values more precisely, we use Newton’s method. Set

2COS Ty — Tp SIN Ty,
—3sinZn — Tn COSTp

h(z) = f"(z) = 2cosx — xsinz. Then A'(x) = —3sinT — £ COST, SO Tnt1 = Tn —

z1=1 = 2z~ 1078028, 3 ~1.076874 ~z4andz; =3.6 = z2~ 3.643996, r3 ~ 3.643597 =~ x4.
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66.

67.

68.

69.

10.

n
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50 the zeros of f”, to six decimal places, are r3 = 1.076874 and r4 = 3.643597. By checking sample values

of f"in (0,73). (r3,74). and (r4, 27). we see that f is CU on (0,73) . H. 4
CD on (r3,74), and CU on (74, 27). f has inflection points at P ,
=T
(3, f(rs) =~ 0.948166) and (74, f(ra) = —1.753240). ) Y
7 1 IP
o
-4
fla)=Vad —4/¥z =2°? —427'% = f(z)= %r”z —4(%:c4/5) +C = %$7/2 — 5z 1 C

f(z) =8z —3sec’z = f(z)=8(iz?) —3tanz + C, = 4z® — 3tanz + C,, on the interval

(nﬂ'— %,_’—.mr—{—%).

flz) =e® — (2/y/x) =e* — 22712 =
po1/2+1 /2
flx)=e —Qm-l-C:e —QW-FCZG —-4\z+C

f(z)=2/(1+2*) = f(z)=2arctanz+C.
f(0) =2arctan0+C =0+C =Cand f(0)=—-1 = C=—-1.s0 f(z) =2arctanz — 1.
f(t) =2t —3sint = f(t)=t>+3cost+C.
f(0)=3+Cand f(0)=5 = C =2.50f(t) =t>+3cost+2.

2
Flu) = 2TV —Z\/ﬂzu+u”1/2 = fu)=3d® +2u'2 4+ C.

f()=3+2+4Cand f(1) =3 = C=3i.s0f(u)=3u>+2u+1

@) =1-6z+482> = f(z)=x-32*+162*+C. f(0)=Cand f'(0)=2 = C=2.50

f(z) = x — 32 4 162> + 2 and hence, f(z) = 12° 2% +42* +22+D. f(0O)=Dand f(0)=1 =

D=1.s0 f(z) = 32° — 2® + da* + 2z + 1.

fl@)=22%432% ~da+5 = fl(z)=3iz"4+2° -2 +52+C =
fl@)= 52"+ 32 = 22° + 32>+ Cz2+D. f(0)=Dand f(0)=2 = D=2
fO)=%+:-2+3+C+2andf(1)=0 = C=-5 -1 440 10 120 _ 281,

_ 1.5, 1,4 2.3, 5.2 _ 21
f(z) = 152° + 32 377+ 5w =T+ 2.
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13. (a) Since f is 0 just to the left of the y-axis. 5

we must have a minimum of F at the
same place since we are increasing f

through (0, 0) on F. There must be a

local maximum to the left of x = —3,

since f changes from positive to negative

there.

(b) f(z) =0.1e" +sinz = F(z)=0.1e* —cosz + C. (©)
F(0)=0 = 01-1+C=0 = C=0.9.50
F(z) =0.1e" — cosz + 0.9.

~“C )

=1

W f(z)=2'+2°+cx® = f'(z)=42"+ 32" + 2cz. Thisis O when z(42® + 3z +2¢) =0 &

2 = 0 or 42 + 3z + 2¢ = 0. Using the quadratic formula, we find that the roots of this last equation are

L, —3+£v0-32%
- 8

.Nowif9—32c <0 < c¢> 5. then (0,0) is the only critical point. a minimum.

Ifec = 3%. then there are two critical points (a minimum at x = 0, and a horizontal tangent with no maximum

or minimum at x = —g) and if ¢ < %. then there are three critical points except when ¢ = 0, in which case
the root with the + sign coincides with the critical pointat z = 0. For 0 < ¢ < ggé, there is a minimum at
3 9 —32¢c , 3 v9-32 . .
T = 3T 8 a maximum at T = r + 3 and a minimum at z = (. For ¢ = 0. there is a
minimum at z = —% and a horizontal tangent with no extremum at z = 0, and for ¢ < 0. there is a maximum at
. 3 9 —-32c
x = 0, and there are minima at x = ~3 + —s Now we calculate f”(z) = 1222 + 6z + 2c.
o . —6++v36—-4-12-2c . .
The roots of this equation are z = 7 .S0if36 -96c<0 & c¢> %, then there is no
. . . 1 | V9 —24c
inflection point. If ¢ < %. then there are two inflection points at x = ~1 + —17
Value of ¢ | No. of CP | No. of IP

c<0 3 2 "2l 0 2 ,

c=20 2 2 (", \ //'/v]
0<c< 35 3 2 -225 [+ | 15

_ 9 \ //
C= 33 2 2 | ;. —08
9 3 \ / 1

33 <c<g3 1 2 N

c> % 1 0 -3

0.3



CHAPTER4 REVIEW O 419

75. Choosing the positive direction to be upward. we have a(t) = —9.8 = v(t) = —9.8¢ + vo. but v(0) =0=wo

=

v(t) = 9.8t =s'(t) = s(t) = —4.9t° + so.but s(0) = so =500 = s(t) = —4.9t? + 500. When

s=0.—492+500=0 = t;=4,/3Qx~101 = v(t)=-98,/5% ~ —98.995m/s. Since the

canister has been designed to withstand an impact velocity of 100 m/s, the canister will not burst.

76. Let s4(t) and sp(t) be the position functions for cars A and B and let f(t) = sa(t) — s(t). Since A passed B

twice, there must be three values of ¢ such that f(t) = 0. Then by three applications of Rolle’s Theorem (see

Exercise 4.2.22). there is a number c such that f”'(c) = 0. So s’ (¢) = s’z(c). that is. A and B had equal

accelerations at t = c. We assume that f is continuous on [0, T| and twice differentiable on (0, T'). where T is the

total time of the race.

71. (a)

(b)

)7

x2+y*=100
y
0 x X

dA
d

V50

dz

The cross-sectional area of the rectangular beam is

A=2z -2y =4ry =4z+/100 — 22,0 < z < 10, s0
dA _
= = 4a(3) (100 - 2%) Y2 (—2z) + (100 — 2%)"/? . 4

—4z? 1/2
= ——————— +4(100 — 2°
(100—$2)1/2 ( z )
_ 4[-2® 4 (100 — z?)]
(100 —z2)Y2

— =0when —z° + (100 -2%) =0 = 2°=50 = z=V50~7.07 =

x
y =14/100 — (\/%)2 = 1/50. Since A(0) = A(10) = 0. the rectangle of maximum area is a square.

The cross-sectional area of each rectangular plank (shaded in the figure) is

A=2z(y - 50) = 2z[v100 — 22 — v/50].0 < z < v/50. s0

=2(v/100 — 22 — v/50) + 22(3) (100 — 22) "*/* (—22)

2
=2(100 - 2?)"/* — 2 /50 — (u)TQz_W
— T

dA ‘
Set = = 0: (100 — &) — V50(100 —2%)/* =2 =0 = 100 - 2z% = V/50(100 - 2*)"/* =
10.000 — 4002” + 4z* = 50(100 — 2°) = 4z* — 3502% + 5000 =0 =

20t — 17522 + 2500 =0 = z2= mi—4— v 10,625

~69.520r 1798 = 1z =~ 8.340r4.24.

But 8.34 > v/50.50 x1 ~®4.24 = y— /50 = /100 — 2% — /50 ~ 1.99. Each plank should have

dimensions about 8% inches by 2 inches.
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(¢) From the figure in part (a). the width is 2z and the depth is 2y. so the strength is

S = k(22)(2y)* = 8kzy® = 8kz(100 — 22) = 800kz — 8kz®. 0 < z < 10. dS/dz = 800k — 24kz? = 0

when 24k2? = 800k = mZZI—gO = x:% = y:,/—%:l—ox/-‘gézﬁm.smce

S5(0) = S(10) = 0, the maximum strength occurs when z = %. The dimensions should be

2—\/% ~ 11.55 inches by 2&\/—3@ ~ 16.33 inches.

g

= (tanf)r — —=——
y = (tanf)z 202 cos? 0

x2. The parabola intersects the

line when (tan o)z = (tan )z — 07 cos? 0 (‘?OSQ 0$2 =

v (tan® — tan a)2v” cos® 6

x g

202 cos @
gcos? a

. . 2 2 . .
R(O) T _ (sm@ sma) 2v° cos® 6 _ <sm9 sin «

Cos cos 6 COs gcos«o cos COSs «x

> (cosf cosa)
2v% cos 6 L 202 cos 6

= (sinf cosa — sina cosf) 3 sin(f — «)
gcos?a

gcos? o

2

, v
(b) R(6) = gcos? o
2

:gf(:;zacos(%—a):0whencos(20—a):0 = 20—a=3% =

. . 202
[cos 8 - cos(d — a) + sin(f — a)(—sind)] = P

0s2 o

cos[f + (60 — o]

W% = % + %. The First Derivative Test shows that this gives a maximum value for R(9).

[This could be done without calculus by applying the formula for sin z cos y to R(6).]

0=

_ 2v%cosf sin(f + a)

Y i —a in part (a), t R(0) = .

(c) e Replacing o by —a in part (a), we get R(6) Joos? o
™, x Proceeding as in part (b), or simply by replacing o by —« in the result of
0 a N x
\‘\ part (b), we see that R(6) is maximized when § = % — %.
kcos®  k(h/d) h h h
1. (a) I = = —k— =k -k :

@ d? d? a3 (V0% + h? )3 (1600 + h2)3/2

1/2

dr _, (1600 + h?)*? — h2 (1600 + h%)"/* - 2h k(1600 + h%)"/* (1600 + h? — 3h%)

an 2 3

k(1600 — 2h%) ‘ . I
= [k is the constant of proportionality]
(1600 + h2)
SetdI/dh = 0: 1600 —2h> =0 = h? =800 = h = +/800 = 20 /2. By the First Derivative Test.
I has a local maximum at h = 20 /2 ~ 28 ft.
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(b)
%:— =4 ft/s

kcos® k[(h—4)/d] k(h—-4) k(-4 N2 2132
I= a2 d? a3 [(h—4)2+m2]3/2 = k(h 4)[(h, 4+ ]
dl dI dzx 91 —5/2 dz
o :E-E:k(h—4)(—%)[(h—4)2+:c] 2

= — -3z — 4)? 21-5/2 4 .__M

= k(h — 4)(=3z)[(h — 4)* + 2°] 4 TR
dI 3 480k (h — 4)

dt|,_,  [(h—4) + 1600]°/

80. (a) V'(¢) is the rate of change of the volume of the water with respect to time. H'(t) is the rate of change of the
height of the water with respect to time. Since the volume and the height are increasing, V' (t) and H'(t) are

positive.
(b) V'(¢) is constant, so V"' (t) is zero (the slope of a constant function is 0).

(c) At first. the height H of the water increases quickly because the tank is narrow. But as the sphere widens, the
rate of increase of the height slows down. reaching a minimum at ¢ = ¢,. Thus, the height is increasing at a
decreasing rate on (0, 2), so its graph is concave downward and H''(¢;) < 0. As the sphere narrows for t > ¢2,
the rate of increase of the height begins to increase. and the graph of H is concave upward. Therefore,

H'"(t2) = 0and H" (t3) > 0.

81. We first show that 1 fmz < tan"'z forz > 0. Let f(z) = tan 'z — 7 —:xl" Then
oo 1 l(l—l—mz) — z(2z) (1+x2) - (1 —xz) 212 . .
f(w)—l+x2' e = 112 —(1+z2)2>0for:r.>0.Sof(:c)ls

T T
.So —— L
1+ z2 Ol—l—m2

increasing on (0,00). Hence. 0 <z = 0= f(0) < f(z) =tan"'& — <tan" 'z

for 0 < z. We next show that tan™' & < z for z > 0. Let h(z) = = — tan~" z. Then

2
R(z) =1 L _

11 # > 0. Hence. h(z) is increasing on (0, 00). So for 0 < z.

<tan"lz <2

0 = h(0) < h(z) = = — tan™' z. Hence. tan™' & < x for z > 0. and we conclude that T f 5
x

forx > 0.
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82. If f'(x) < Oforall z, f"(z) > O for |z| > 1. f(x) < O for || < 1. and

lilil [f(z) + z] = 0. then f is decreasing everywhere. concave up on

(—o0, —1) and (1, 00). concave down on (—1, 1), and approaches the line

y = —x as * — £o0o. An example of such a graph is sketched.
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2
1. Lety = f(z) = e The area of the rectangle under the curve from —z to z is A(z) = 2ze™® where z > 0.

We maximize A(z): A'(z) = 2" — dg2e " = 2e " (1-22°)=0 = z= % This gives a maximum
since A'(z) > 0for0 < z < % and A'(z) < 0 forz > f We next determine the points of inflection of f(z).
Notice that f'(z) = 2z = —A(z). So f'(x) = —A'(zx) and hence. f"(z) < 0 for — \/5 <z< % and
f'(z) > 0forz < _\/Li and x > % So f(z) changes concavity at z = :t%. and the two vertices of the
rectangle of largest area are at the inflection points.

2. Let f(z) = sinz — cosz on [0, 27| since f has period 2. f'(z) = cosxz +sinz =0 < cosz = —sinz <

3m

tanr = -1 & z= 4

or 7% Evaluating f at its critical numbers and endpoints, we get f(0) = —1.
fR) =V2.f(Z) = —\/5. and f(27) = —1. So f has absolute maximum value +/2 and absolute minimum

value —v/2. Thus, —v/2 < sinz — cos z <vV2 = |sinz — cosz| < V2.

T +y 5 6::: ey
>e® & — - — >e-e Thissuggests that we
Y

3. First, we recognize some symmetry in the inequality:
x

e . . . . eY . L .
need to show that — > e for z > 0. If we can do this, then the inequality — > e is true, and the given inequality
T Y

follows. f(z) = % = flz)= e p € _¢ (22 ) =0 =z = 1. By the First Derivative Test. we

have a minimum of f(1) = e. so €/z > e forall z.
8 z2%y* (4 —2?) (4 - °) =22 (4 — 2°)y2(4 — v?) = f(z)f(y). where f(t) = t*(4 — t*). We will show that
0 < f(t) < 4for [t| < 2. which gives 0 < f(z)f(y) < 16 for |z| < 2 and |y| < 2.
f@) =
f(0) =0, f(£v2) =2(4 - 2) = 4.and f(2) = 0. So 0 is the absolute minimum value of f(t)on[-2.2)and 4 is

-ttt = f)=8t—4t3=4t(2-*) =0 = t=0or£y2.

the absolute maximum value of f(t) on [—2.2]. We conclude that 0 < f(t) < 4 for |¢| < 2 and hence.
0< f(@)f(y) <4 or0 < 2?(4 - 2%)y* (4 - y?) < 16.

5. First we show that z(1 — z) < § forall z. Let f(z) = z(1 — &) = = — 2°. Then f'(z) = 1 — 2z. This is 0 when
=z and f'(z) > Oforz < §. f'(z) < 0forz > L. s0 the absolute maximum of f is f(3) = . Thus.
z(1 —z) < § forall z.
Now suppose that the given assertion is false. that is. a(1 — b) > i and b(1 — a) > i‘ Multiply these
inequalities: a(1—b)b(1—a) > & = [a(l —a)][b(1 —b)] > 76+ But we know that a(1 — a) < 1 and
b1-b)< i = [a(l-a)][b(1—b)] < . Thus. we have a contradiction. so the given assertion is proved.

423
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6. Let P(a,1 — a®) be the point of contact. The equation of the tangent line at P is y — (1-a®) = (—2a)(z — a)

= y-1+a®>=-2ax+2a> = y=—2az+da®>+1. Tofind the x-intercept, puty = 0: 2az = a’+1 =

2
a“+1 .

T = 2 To find the y-intercept, put z = 0: y = a® + 1. Therefore. the area of the triangle is

1/a®+1 a®+1)° A 2+1)°

|\ —=—)(*+1) = (——) Therefore. we minimize the function A(a) = -(Ei)—, 0<a<l

2 2a 4a 4a

Ay = B2 +1) 20— (@4 1)) (0 +1)l4a® ~ (@4 1) _ (o2 +1) (307 1)
N 1642 - 4a? - 4a2 :

A'(a) =0when3a®> -1=0 = a= % A'(a) < 0fora < % A'(a) > 0fora > % So by the First
Derivative Test. there is an absolute minimum when a = —=. The required point is (—\}—5-, %) and the corresponding

. . 1 43
min : 1) = )
inimum area is A(\/é) Y

N . . d
7. Differentiating 2> + zy + > = 12 implicitly with respect to z gives 2z +y + = g—z +2y ﬁ =0, so
% = _im++2gy;' At a highest or lowest point, Z—z =0 <& gy = —2z. Substituting —2z for y in the original

equation gives 2 + z(—2x) + (—2x)% = 12,50 3z> = 12and z = +2. If z = 2, theny = —2z = —4. and if
x = —2 then y = 4. Thus, the highest and lowest points are (—2, 4) and (2, —4).

8. Case (i) (first graph): Forz +y > O.thatis,y > —z. [z +y|=z+y <e® = y<Le' —=x.
Note that y = e — z is always above the line y = —z and that y = —z is a slant asymptote.

Case (ii) (second graph): Forz +y < 0, thatis,y < —z. |z +y|=—-z—y<e® = y> -z —¢€"

Note that —z — e” is always below the line y = —x and y = — is a slant asymptote.

Putting the two pieces together gives the third graph.

9. A = (z1,2%) and B = (w2, x3). where 1 and x are the solutions of the quadratic equation z2 = mz + b. Let
P = (z,2?) and set A; = (21,0). B1 = (22,0). and P1 = (z.0). Let f(z) denote the area of triangle PAB.

Then f(z) can be expressed in terms of the areas of three trapezoids as follows:
f(z) = area (A1 ABB,) — area (A1 APP,) — area (B1 BPPy)

=1(z} +23)(x2 — 71) — %(mf+m2)(x~x1) — L(2® + 23) (x2 — 2)



10.

1.

12.
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After expanding and canceling terms, we get
f(z) = (z2a} — m123 — xaf + T12% — 222” + z23) = L[z} (22 — 7) + 25 (z — 71) + 2 (31 — 72)]
f(z) = 2 [—2} + 23 + 2z(z1 — 22)]. f'(2) = 3[2(z1 — 22)] = 21 — z2 < Osince z2 > z1.

fllx)=0 = 2z(z1—22)=2}-23 = zp=1(z1+22).

(23 [ (22 — 21)] + 23 [L(z2 — 21)] + 321 + 22)° (21 — 22))

~
—~
8
~
~
Il
=

[3(x2 — z1) (2] + 23) — (72 — 1) (21 + 22)°]

[NIE

(z2 — 1) [2(wf + mg) - (m% +2z120 + :cg)]

ol

(CEQ - 1‘1)(:13% —2z172 + z%) = é(mz - :Cl)(:ltl - w2)2 = %(mg - 111)(132 - 131)2

0ol

= §(z2 — 1)’

To put this in terms of m and b, we solve the system y = % and y = ma; + b, givingusz? —mz1 —b=0 =
= 3(m-— \/m_z—i-—4b) Similarly, z = 5 (m + \/M) The area is then

Lz —21)* = %(\/M)s and is attained at the point P(zp,z%) = P(3m, im?).

Note: Another way to get an expression for f(z) is to use the formula for an area of a triangle in terms of the

coordinates of the vertices: f(z) = § [(z22% — 2123) + (z12® — zzi) + (x23 — 222?)].

If f”(z) > O for all . then f is increasing on (—00, 00). so f’(0) must be greater than f’(—1). But

f'(0) =0 < 1 = f'(~1). so such a function cannot exist.

f(z) = (a® +a—6)cos2z+ (a— 2z +cosl = f'(z)=—(a®+a—6)sin2z(2)+ (a—2).
The derivative exists for all z, so the only possible critical points will occur where flz)=0 <

2(a—2)(a+3)sin2z =a—2 <& eithera = 2or 2(a + 3)sin 2z = 1. with the latter implying that

sin 2z = -2(71_1_?). Since the range of sin 2 is [—1, 1]. this equation has no solution whenever either
1 < -—lor 1 > 1. Solving these inequalities, we get —Z < q < —3
2(a +3) 2a+3) " & d P We gt 73 2

To sketch the region {(z,y) | 2zy < |z — y| < 2 + y?}, we consider two cases.
Yy

Case I: x >y  This is the case in which (z, y) lies on or below the line y = z. The double inequality

becomes 2zy < x — y < z? + y>. The right-hand inequality holds if and only if 2> —z + 9> +y > 0 <

(z - %)2 + (y+ %)2 >1 & (z,y) lies on or outside the circle with radius % centered at (3, —1).




426 0O CHAPTER4 PROBLEMS PLUS

The left-hand inequality holds if and only if 22y — 2 +y <0 & zy-— %m +1y<0 &
(z+3)(y—3) <—3 © (z,y) lies on or below the hyperbola (z + 1) (y — 1) = —1. which passes
through the origin and approaches the lines y = % andx = —% asymptotically.

Case 2: y > x  This is the case in which (z, y) lies on or above the line y = x. The double inequality
becomes 2zy < y — z < z? 4 y*. The right-hand inequality holds if and only if 2% + = + y? — y>0 &
(z+ %)2 + (y — %)2 > 1 & (z,y) lies on or outside the circle of radius \/— centered at (—1, 1). The
left-hand inequality holds if and only if 2zy +z —y <0 & zy+ ;5 1y — —y <0 & (m — —) (y + 35 ) —i
< (z,y) lies on or above the left-hand branch of the hyperbola (:c - —) (1/ + ) = —i. which passes through the
origin and approaches the lines y = —% and z = % asymptotically. Therefore, the region of interest consists of the
points on or above the left branch of the hyperbola (z — 1) (y + %) = —% that are on or outside the circle
(z+ %)2 + (y — %)2 = 1. together with the points on or below the right oy

branch of the hyperbola (a: + %) (y — %) = —% that are on or outside the circle

(z— %)2 + (y+ %)2 = 1. Note that the inequalities are unchanged when

and y are interchanged, so the region is symmetric about the line y = z. So we

need only have analyzed case 1 and then reflected that region about the line

y = x, instead of considering case 2.

13. (a) Lety = |AD|, z = |AB|, and 1/z = |AC|. so that |AB| - |AC| = 1. B
We compute the area A of AABC in two ways. First.
= 1|AB||AC|sin% = 5 -1- 3? = @. Second, x .
A = (area of AABD) + (area of AACD)
11AB||AD|sin § +  |AD||AC|sin §
= 1oyl 4 Ly(1/z) L = Ly(z + 1/x)

Equating the two expressions for the area, we get 7 y(:c + - ) y=7 Tz @+l

Another method: Use the Law of Sines on the triangles ABD and ABC. In AABD. we have
/A+ /B+ /4D =180° & 60°+a+ /D =180° < /D =120° — c. Thus,

T _ sin(120° — «) _ sin 120° cos a — cos 120° sin & _ ? cos?z + 3 sina T _ £ cota+ 1
y sin o sin o s o
. . . . $
and by a similar argument with AABC, 3§ cota = x° + % Eliminating cot o gives ; = (x2 + %) + % =




14.
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(b) We differentiate our expression for y with respect to  to find the maximum:

dy (£ +1) —z(2x)  1-2°

= 0 when z = 1. This indicates a maximum by the First Derivative

dx (22 +1)° (2 +1)°

Test, since y'(z) > 0 for 0 < z < 1 and y'(z) < 0 for z > 1. so the maximum value of y is y(1) = i

Letz = |AE|, y = |AF| as shown. The area A of the AAEF is A = $xy. We
need to find a relationship between x and y, so that we can take the derivative
dA/dz and then find the maximum and minimum areas. Now let A’ be the point
on which A ends up after the fold has been performed. and let P be the intersection
of AA’ and EF. Note that AA’ is perpendicular to E'F' since we are reflecting A
through the line EF to get to A, and that | AP| = |PA’| for the same reason. But
|AA'| = 1, since AA’ is a radius of the circle. Since |AP| + |[PA’| = |AA’|.

we have |AP| = % Another way to express the area of the triangle is
A= 1|EF||AP| = ;\/2* + y?(}) = 1 /% + y2. Equating the two expressions for .A. we get
lry=3/22+y2 = 4P =2"+y* = PP -1)=2> = y=z/Via? -1

(Note that we could also have derived this result from the similarity of AA’ PE and AA’' FE; that is,

A'P| |AF 1 , 1,
|1PE||:ﬁ _—#:% - oY= 43622_1/2: 4;_1)
2 - (3)
2
Now we can substitute for y and calculate d;‘l: A= 1_ = N
dx 2J4z? — 1
dA  1[VaZZ=1(2z) — 22(%) (42® - 1) 7?8z _
dz - 2 I: 2) 4m§2_)(1 ) (8z) . This is O when 2z /422 — —4-’133(41:2 _ 1) 1/2 _ 0

& 2(e? - 1)V 4 -1) -20°] =0 = (422-1)-22=0(2>0) & 2uP=1 =

T = % So this is one possible value for an extremum. We must also test the endpoints of the interval over

which z ranges. The largest value that x can attain is 1. and the smallest value of x occurs wheny =1 <
l=z/V4r?2 -1 & 2*=42’-1 & 32°=1 & z= - This will give the same value of A as will

x = 1, since the geometric situation is the same (reflected through the line y = z). We calculate

A(%) 1 anM2) i =0.25.and A(1) =

2 a3 —1

is A(1) = A(%) = 2—\1/5 and the minimum area is A(%) =1

12

1 1
2 /412 -1 23

=~ 0.29. So the maximum area

Another method: Use the angle 6 (see diagram above) as a variable:

1 1
8sinf cosd ~ 4sin26°

1. 1/1 1 . P . . . .
A=szy=3 (5 sec 9) (5 csc 9) = A is minimized when sin 26 is maximal, that is,
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whensin20=1 = 20=%5 = 9:%.AlsonotethatA’E:x:%secé)S1 = sech<2 =

00562% = OS%.andsimilarly.A’F:y:%csc(‘)gl = c¢sch<2 = sin9§% = 0>%.
. . L. . 1 1 1
As above, we find that A is maximized at these endpoints: A(Z) = = = =A(Z):
p (6) 4sin§ 2\/?—) 4sin%” A(s),and
minimized at § = Z: A(E) __1 1
T4 - 4sinf 4

15. Suppose that the curve y = a” intersects the line y = z. Then a®® = x¢ for some zo > 0. and hence a = $(1)/zo_

We find the maximum value of g(z) = 2/, > 0, because if a is larger than the maximum

value of this function, then the curve y = a” does not intersect the line y = z.

g (z) = e/®)me (-lz Inz + 1 l) =g/ (%) (I —Inz). This is 0 only where z = e, and for 0 < z < e,
x T z

f'(z) > 0. while for z > e. f'(z) < 0. so g has an absolute maximum of g(e) = e'/¢. So if y = a® intersects

y = z. we must have 0 < a < e'/°. Conversely. suppose that 0 < a < e*/. Then a* < e. so the graph of y = a®

lies below or touches the graph of y = z at z = e. Also a” = 1 > 0, so the graph of y = a” lies above that of

y = x at x = 0. Therefore, by the Intermediate Value Theorem, the graphs of y = a” and y = = must intersect

somewhere between x = 0 and x = e.

x
16. If L = lim (I a) . then L has the indeterminate form 1°°, so

z—oo\ T — a
T 1 _1 B
InL = lim In zta = lim zln zta — lim n(z +a) —In(z —a)
To r—a T—00 rT—a z—00 1/z
1 1 ,
H oy z+a z—a _ (x—a)—(x+a) -z
_zlilvlgo —1/.’1,‘2 —mll»nolo[ (z+a)(;1;—a) 1
2
lim = lim 2a 2a

Hence, In L = 2a. so L = €°*. From the original equation, we want L =e' = 2a=1 = a= %

f(z)

T

| f(=)] < |sinz| sinz
lz[  — | x

17. Note that f(0) = 0. so for z # 0. ‘f(xi : 5(0)\ =

f(m)—f(O)’
-0

= lim
xz—0

lim
x—0

Therefore. | f'(0)| =

T z—0 T

M‘ < lim ST But
z—0

f(z) = a1 cosz + 2a2 cos 2z + - - - + na, cosnz, so | f'(0)| = |a1 + 2a2 + - +nan| < 1.

Another solution: We are given that |7 _, ax sin kz| < |sinz|. So for z close to 0. and z # 0. we have

n inkx n sin kx n . sinkzx . o
ar ka <1 = lim|> ar— <1 = | arlim — < 1. But by I'Hospital's Rule,
k=1 smx | z—0 | = sinx k=1 =—0 sinzx
sin kx kcoskx n
lim — = lim k.so|Y kax| <1
z—0 sing -0 COST =1
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18. Let the circle have radius r. so |OP| = |OQ| = . where O is the center of the circle. Now ZPOR has measure

16, and ZOPR is aright angle. so tan 36 = @ and the area of AOPR is 1 |OP||PR| = 3r” tan 36. The

area of the sector cut by OP and OR is 7%(16) = 1r?6. Let S be the intersection of PQ and OR. Then

|PS|
T

sini6 = and cos

2 2

Lo :@. and the area of AOSP is
T
1108||PS| = 1 (rcos 16)(rsin £0) = 1rsin £6 cos 360 = 3r°sin6.
So B(6) = 2(3r?tan 10 — 1r20) = r?(tan 16 — 16) and A(0) = 2(3r°0 — r’sin6) = 37%(6 —sin0).

S A(9) i 1r%(0 — sin ) I 0 —sind Hopin 1 —cosf
) = -2 = lim —————— = I S
ot B(9) 60t 12 (tan 30 — 26)  o—o+ 2(tan 30 — 36)  6—o+ 2(5 sec? 30 — 3)

1—cosf . 1—cosf u .. sin 6

lim ———— = lim ———— = lim
21g 21 1 21p9)1
o—0+ sec2 20 —1  o—o+ tan?16  o—o+ 2(tan 30)(sec? 30)3

Il

. . 31
sin 6 cos® 16 i (2sin 26 cos 16)cos® 36
—_— = 1

Il

= =2 lim cos*(%6) =2(1)* =2
b0+ sin 6 90+ sin 16 et (30) =2(1)

D
19. (a) Distance = rate X time, so time = distance/rate. T} = —,
C1

T 2|PR)| 4 |[RS|  2hsech n D — 2htanf T 2\/h?+ D%/4  +/4h? + D?
9 = = .13 = .

C1 C2 C1 C2 Cc1 C1
T 2h
(b) d—z— = — -sech tanf — %86029 = 0 when 2h sec 0 1 tanf — 1 secf) =0 =
do c1 c2 c1 c2
1 sinf 1 i
—smy 2 1 = = sin 0 = ! = sinf = c_1' The First Derivative Test shows that
c1 cosf  cocosb cicosf  cpcosf c2

this gives a minimum.

(c) Using part (a) with D = 1 and T1 = 0.26, we have T} = 2 =
C1
V4h? + D?

— 1 |4 —
c1 = 53 ~ 3.85km/s. T3 = o

4h? + D* =T =

h = 3/T3c3 — D2 = 1,/(0.34)2(1/0.26)2 — 12 ~ 0.42 km. To find c,. we use sin 6 = z—; from part (b)

_ 2hsect + D —2htan6
- C1 C2

from part (a). From the figure,

. c c c
sinf == = secl=——=2 andtand = L

e VZ-a VZ-4a
G
T 2hca N D\/c% —c? — 2hc; ¢
b= .
Ry
c1y/c2 — 2 cav/c: —¢c2

Using the values for T> [given as 0.32], h. c1, and D, we can graph

. SO

Jei—el

2hc Dy/cZ —c% — 2hc; . . . 4 .
o \/cg——T% + - m and find their intersection points. Doing so gives us
c2 ~ 4.10 and 7.66, but if c; = 4.10. then 6 = arcsin(c1 /c2) & 69.6°, which implies that point S is to the left
of point R in the diagram. So c2 = 7.66 km/s.

Yi=Trand Yy =
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20. A straight line intersects the curve y = f(z) = z* + c2® + 122% — 5z + 2 in four distinct points if and only if the
graph of f has two inflection points. f'(z) = 42® + 3cz® 4 24z — 5 and f”(z) = 122> + 6cz + 24.

—6c £ 1/(6¢)2 — 4(12)(24
f'z)=0 & z= < (26()12) (12)( ) There are two distinct roots for f”/(z) = 0 (and hence two

inflection points) if and only if the discriminant is positive; that is, 36¢> — 1152 >0 < 2 >32 &

le| > +/32. Thus. the desired values of c are ¢ < —4 /2 or ¢ > 4/2.

21. d . Leta = |EF| and b = |BF| as shown in the figure.
Since £ = |BF| + |FD|, |FD| = ¢ — b. Now

|ED|=|EF|+|FD|=a+£-b
=vrt—z2+4+/0—+/(d—z)?+a?
2
:\/rz—x2+€—\/(d—-x)2+ (\/rz—zz)
=Vr2—z2 40— \/d? -2z + 22 +r? — 22

Let f(z) = v/r2 — 22 + £ — /d? + r2 — 2dz.

reoN 2 2\ —-1/2 1042 .2 “1/2, o _ —_z d
fl(@)=3(r’ —a?) /" (—2z) — 3 (d® +r® — 2dz) /" (-2d) = \/rz—m2+\/d2+r2—2d:c'
) . d 1_2 _ d2

fllz)=0 = ViZ—-22 V&t -2z T P2 &t

d?z® 4 r?2? — 2dz® = d*r? —d*2® = 0= 2d2® - 2d%2® - r?2® + &P =
0=2d2*(z —d) —r*(2? —d*) = 0=2d2*(z—d)—r’(z+d)(z—d) =
0= (z — d)[2dz® - r(z +d)]

Butd > r > z. 50 z # d. Thus, we solve 2dz? — r’z — dr? = 0 for x:

—(=r) £ \/(irz)Z — 4(2d)(—dr?) 2 +£/rt +8d%r?
2(2d) B 4d

. Because /74 + 8d2r2 > 72, the “negative”

xr =

can be discarded. Thus,

2+ Vr2Vr2 £8d2 1?4 r+/r? + 8d?
= =
4d 4d

(r>0)

r

4d(r+ r2+8d2)

The maximum value of | ED| occurs at this value of z.
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E
b
s
cL& D
a

—a —

Let a = C'D denote the distance from the center C of the base to the midpoint D of a side of the base.

g___r = a= rh =7 \/E
h /h(h—2r) Vh(h—=2r) Vh—2r

Let b denote one-half the length of a side of the base. The area A of the base is

Since APQR is similar to ADCR,

A = 8(area of ACDE) = 8(3ab) = 4a(atan ) = 4a’.

4 Vi ) h?
The volume of the pyramid is V = ; Ah = 1 (4a®) h = 3 (r—ﬁ) h= %rQh—_—E, with domain h > 2r.
Now WV _ 4.2 (h=2)2h) —h*(1) 4 o1 —dhr 4 ,h(h—4r)
dn ~ 3 (h —2r)2 3 (h—2r)2 3 (h—2r)2
d d?V 4 , (h—2r)*(2h —4r) — (h® — 4hr) (2)(h — 2r)(1)
" ahz = 3" [(h —2r)?P
4 5 2(h—2r) [(R® — 4hr + 4r%) — (R® — 4hr)]
= —=7r°.
3 (h—2r)?
_ 8, 4 32 4 1

T3 2 T3 o2
The first derivative is equal to zero for h = 4r and the second derivative is positive for A > 2r, so the volume of the
pyramid is minimized when h = 4r.
To extend our solution to a regular n-gon. we make the following changes:

(1) the number of sides of the base is n

(2) the number of triangles in the base is 2n
(3) ZDCE ="
n
(4) b=atan T
n
We then obtain the following results:

(ﬂ') R dV  nr? (7‘(‘) _h(h—4r)

A=na’tan TV = T gan(T) L 47 _ s

natany 3 L) =2 3 (h—2r)2° and
V. 8nr? m 1 . - . .
P ta.n(;) . (_hTr)S Notice that the answer. h = 4r, is independent of the number of sides of the

base of the polygon!
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23.

24.
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dv dr dv . av
_ 4.3 _ 2 .
V=3 <& rTi 4rr pr But T is proportional to the surface area, so i k - 47r? for some
5 dr 9 dr . . .
constant k. Therefore, 47r i k-4mr® < pri k = constant. An antiderivative of k with respect to ¢ is

kt,sor = kt + C. When t = 0, the radius r must equal the original radius 7. so C = rg, and r = kt + 7. To find

k we use the fact that whent = 3,7 =3k +rpand V = %Vo = §7r(3k + ro)3 =1. %m*g =

(Bk+70)’ =ird = 3k+ro=éro = kzé%(é—l)ﬂincer:kt"ﬂ"m

r= %ro (?ﬁ — 1) t + ro. When the snowball has melted completely we have r =0 =

3 3,
3V2 . Hence, it takes 3V2 —-3= 3 2~ 11 h 33 min

V21 2-1 J2-1

70 <% — 1>t + 79 = 0 which gives t =

longer.

By ignoring the bottom hemisphere of the initial spherical bubble, we can rephrase the problem as follows: Prove
that the maximum height of a stack of n hemispherical bubbles is v/ if the radius of the bottom hemisphere is 1.
We proceed by induction. The case n = 1 is obvious since V/1 is the height of the first hemisphere. Suppose the
assertion is true for n = k and let’s suppose we have k + 1 hemispherical bubbles forming a stack of maximum
height. Suppose the second hemisphere (counting from the bottom) has radius r. Then by our induction hypothesis

(scaled to the setting of a bottom hemisphere of radius ). the height of the stack formed by the top k bubbles is

V. (If it were shorter, then the total stack of k + 1 bubbles wouldn’t have maximum height.)

The height of the whole stack is H(r) = vk + /1 — r2. (See the figure.) £ Ny
We want to choose  so as to maximize H(r). Note that 0 < r < 1. We calculate :
! _ r " _ -1 ! _ vkr
H'(r)=Vk — —m and H" (r) = S H((r)=0 &
2 2 2 k . L .
r’=k(l1-r*) & (k+1)r‘=%k & 1=,/ Thisistheonly
k+1 g N
critical number in (0, 1) and it represents a local maximum (hence an absolute iR
k
maximum) since H”'(r) < Oon (0,1). Whenr = 4/ Pt
H(r) = vk vk +4/1 k k ! = v/k + 1. Thus, the assertion is true forn = k + 1

. — +
N/ F+1 VErl  VEil

when it is true for n = k. By induction. it is true for all positive integers n.

Note: In general, a maximally tall stack of n hemispherical bubbles consists of bubbles with

radii14/9;1.1/”42....,,/24/1.
n n n n






